Please wait a minute...
中国腐蚀与防护学报  2016, Vol. 36 Issue (2): 107-112    DOI: 10.11902/1005.4537.2016.024
  本期目录 | 过刊浏览 |
几种高熵合金在核电高温高压水中的腐蚀行为研究
向超1,2,王家贞1,付华萌3,韩恩厚1(),张海峰3,王俭秋1,张志明1
1. 中国科学院金属研究所 中国科学院核用材料与安全评价重点实验室 沈阳 110016
2. 东北大学材料与冶金学院 沈阳 110004
3. 中国科学院金属研究所 沈阳材料科学国家 (联合) 实验室 沈阳 110016
Corrosion Behavior of Several High-entropy Alloys in High Temperature High Pressure Water
Chao XIANG1,2,Jiazhen WANG1,Huameng FU3,En-Hou HAN1(),Haifeng ZHANG3,Jianqiu WANG1,Zhiming ZHANG1
1. Key Laboratory of Nuclear Materials and Safety Assessment, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2. School of Materials and Metallurgy, Northeastern University, Shenyang 110004, China
3. Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
全文: PDF(1050 KB)   HTML
摘要: 

通过电弧炉熔炼制备了3种不同成分的高熵合金Co1.5CrFeNi1.5Ti0.5Mo0.1,AlCoCrFeNiSi0.1和TaNbHfZrTi。并通过XRD和SEM等方法对以上几种材料的相结构、微观组织和化学成分进行分析。以核电站中商用690TT合金作为对比材料,采用高温电化学手段研究了这3种高熵合金在高温高压水中的再钝化动力学参数。结果表明,Co1.5CrFeNi1.5Ti0.5Mo0.1,AlCoCrFeNiSi0.1和TaNbHfZrTi 3种合金均由单一相组成,Co1.5CrFeNi1.5Ti0.5Mo0.1为fcc结构,AlCoCrFeNiSi0.1和TaNbHfZrTi为bcc结构。Co1.5CrFeNi1.5Ti0.5Mo0.1合金铸态组织为枝晶结构,枝晶为富Cr和富Fe相,枝晶间相为富Ni和富Ti相。AlCoCrFeNiSi0.1合金的晶粒内部和晶界处存在较小的成分差异。TaNbHfZrTi合金铸态组织为枝晶结构,枝晶为富Ta和富Nb相,枝晶间相为富Hf,富Zr和富Ti相。Co1.5CrFeNi1.5Ti0.5Mo0.1,AlCoCrFeNiSi0.1,TaNbHfZrTi和690TT合金在高温高压水中再钝化速率由快到慢的顺序为:TaNbHfZrTi>Co1.5CrFeNi1.5Ti0.5Mo0.1>690TT>AlCoCrFeNiSi0.1

关键词 高熵合金高温高压水腐蚀再钝化    
Abstract

Three high-entropy alloys Co1.5CrFeNi1.5Ti0.5Mo0.1, AlCoCrFeNiSi0.1 and TaNbHfZrTi were prepared by arc melting. Their phase structure, microstructure and chemical composition were studied by means of X-ray diffraction (XRD) and scanning electron microscopy (SEM). A commercial alloy 690TT was used as the contrast material. The repassivation kinetics of the three high entropy alloys in high temperature pressurized water was investigated by means of electrochemical test. The results show that Co1.5CrFeNi1.5Ti0.5Mo0.1, AlCoCrFeNiSi0.1 and TaNbHfZrTi high entropy alloys are all composed of single phase. The crystallographic structure of Co1.5CrFeNi1.5Ti0.5Mo0.1 alloy is fcc, while that of the alloys AlCoCrFeNiSi0.1 and TaNbHfZrTi is bcc. The SEM results show that the Co1.5CrFeNi1.5Ti0.5Mo0.1 alloy showed a typical dendritic microstructure, of which the dendrite riches in Cr and Fe, but the interdendrite zone riches in Ti and Ni. There is no obvious element segregation observed in the AlCoCrFeNiSi0.1 alloy. The TaNbHfZrTi alloy also exhibited a dendritic microstucture, of which the dendrite riches in Ta and Nb, and the interdendrite zone riches in Hf, Zr and Ti. The repassivation rates of these four alloys in high-temperature pressurized water may be ranked as the following sequence: TaNbHfZrTi>Co1.5CrFeNi1.5Ti0.5Mo0.1>690TT>AlCoCrFeNiSi0.1.

Key wordshigh-entropy alloy    high temperature high pressure water    corrosion    repassivation
    

引用本文:

向超,王家贞,付华萌,韩恩厚,张海峰,王俭秋,张志明. 几种高熵合金在核电高温高压水中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2016, 36(2): 107-112.
Chao XIANG, Jiazhen WANG, Huameng FU, En-Hou HAN, Haifeng ZHANG, Jianqiu WANG, Zhiming ZHANG. Corrosion Behavior of Several High-entropy Alloys in High Temperature High Pressure Water. Journal of Chinese Society for Corrosion and protection, 2016, 36(2): 107-112.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2016.024      或      https://www.jcscp.org/CN/Y2016/V36/I2/107

图1  3种高熵合金的XRD谱
图2  Co1.5CrFeNi1.5Ti0.5Mo0.1,AlCoCrFeNiSi0.1和TaNbHfZrTi合金的SEM像
Region Co Cr Fe Ni Ti Mo
Nominal 26.75 18.75 18.75 26.75 8.00 1.00
DR 26.82 19.28 20.46 26.52 5.83 1.09
ID 26.02 10.34 12.77 32.48 17.64 0.75
表1  Co1.5CrFeNi1.5Ti0.5Mo0.1合金化学成分的EDS分析结果
图3  不同材料在300 ℃高温水中的动电位极化曲线
Region Al Co Cr Fe Ni Si
Nominal 19.60 19.60 19.60 19.60 19.60 2.00
A 20.34 19.49 18.54 20.10 19.64 1.90
B 18.44 19.81 20.39 21.66 18.18 1.53
C 16.56 20.36 21.01 21.13 18.21 2.73
表2  AlCoCrFeNiSi0.1高熵合金化学成分的EDS分析结果
图4  不同材料在划伤过程中的暂态电流密度变化曲线
Region Ta Nb Hf Zr Ti
Nominal 20.00 20.00 20.00 20.00 20.00
DR 24.40 18.68 23.40 16.55 16.97
ID 14.94 15.32 24.58 24.38 20.78
表3  TaNbHfZrTi合金化学成分的EDS分析结果
图5  暂态电流密度I的对数与积分电量密度的倒数1/Q的关系曲线
图6  不同材料在300 ℃下的cBV值
[1] Yeh J W, Chen S K, Lin S J, et al.Nanostructured high entropy alloys with multiple principal elements: novel alloy design concepts and outcomes[J]. Adv. Eng. Mater., 2004, 6: 299
[2] Liu Y, Li Y X, Chen X, et al.High-entropy alloy with multi-principal elements—state of the art[J]. Mater. Rev., 2006, 20: 4
[2] (刘源, 李言祥, 陈祥等. 多主元高熵合金研究进展[J]. 材料导报, 2006, 20: 4)
[3] Murty B S, Yeh J W, Ranganathan S.High-entropy Alloys[M]. London: Butterworth-Heinemann, 2014
[4] Chen Y Y, Duval T, Hung U D, et al.Microstructure and electrochemical properties of high entropy alloys—a comparison with type-304 stainless steel[J]. Corros. Sci., 2005, 47: 2257
[5] Hsu Y J, Chiang W C, Wu J K.Corrosion behavior of FeCoNiCrCux high-entropy alloys in 3.5% sodium chloride solution[J]. Mater. Chem. Phys., 2005, 92: 112
[6] Chou Y L, Yeh J W, Shih H C.The effect of molybdenum on the corrosion behaviour of the high-entropy alloys Co1.5CrFeNi1.5Ti0.5Moxin aqueous environments[J]. Corros. Sci., 2010, 52: 2571
[7] Liu Y, Cheng C, Shang J, et al.Oxidation behavior of high-entropy alloys AlxCoCrFeNi (x= 0.15, 0.4) in supercritical water and comparison with HR3C steel[J]. Trans. Nonferrous Met. Soc. China, 2015, 25: 1341
[8] Bosch R W, Schepers B, Vankeerberghen M.Development of a scratch test in an autoclave for the measurement of repassivation kinetics of stainless steel in high temperature high pressure water[J]. Electrochim. Acta, 2004, 49: 3029
[9] Macdonald D D, Scott A C, Wentrcek P.External reference electrodes for use in high temperature aqueous systems[J]. J. Electrochem. Soc., 1979, 126: 908
[10] Senkov O N, Scott J M, Senkova S V, et al.Microstructure and room temperature properties of a high-entropy TaNbHfZrTi alloy[J]. J. Alloy. Compd., 2011, 509: 6043
[11] Wang J, Han E-H, Wang J.The repassivation kinetics study of Alloy 800 in high-temperature pressurized water[J]. Electrochem. Commun., 2015, 60: 100
[12] Wang J, Li X, Wang J, et al.Development of a scratch electrode system in high temperature high pressure water[J]. Corros. Sci., 2015, 95: 125
[13] Cabrera N, Mott N F.Theory of the oxidation of metals[J]. Rep. Prog. Phys., 1949, 12: 163
[14] Burstein G T, Marshall P I.Growth of passivating films on scratched 304L stainless steel in alkaline solution[J]. Corros. Sci., 1983, 23: 125
[15] Cho E A, Kim C K, Kim J S, et al.Quantitative analysis of repassivation kinetics of ferritic stainless steels based on the high field ion conduction model[J]. Electrochim. Acta, 2000, 45: 1933
[16] Ahn S, Shankar Rao V, Kwon H, et al.Effects of PbO on the repassivation kinetics of alloy 690[J]. Corros. Sci., 2006, 48: 1137
[17] Kwon H S, Cho E A, Yeom K A.Prediction of stress corrosion cracking susceptibility of stainless steels based on repassivation kinetics[J]. Corrosion, 2000, 56: 32
[1] 董续成, 管方, 徐利婷, 段继周, 侯保荣. 海洋环境硫酸盐还原菌对金属材料腐蚀机理的研究进展[J]. 中国腐蚀与防护学报, 2021, 41(1): 1-12.
[2] 唐荣茂, 朱亦晨, 刘光明, 刘永强, 刘欣, 裴锋. Q235钢/导电混凝土在3种典型土壤环境中腐蚀的灰色关联度分析[J]. 中国腐蚀与防护学报, 2021, 41(1): 110-116.
[3] 韩月桐, 张鹏超, 史杰夫, 李婷, 孙俊才. 质子交换膜燃料电池中TA1双极板的表面改性研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 125-130.
[4] 张雨轩, 陈翠颖, 刘宏伟, 李伟华. 铝合金霉菌腐蚀研究进展[J]. 中国腐蚀与防护学报, 2021, 41(1): 13-21.
[5] 冉斗, 孟惠民, 刘星, 李全德, 巩秀芳, 倪荣, 姜英, 龚显龙, 戴君, 隆彬. pH对14Cr12Ni3WMoV不锈钢在含氯溶液中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2021, 41(1): 51-59.
[6] 左勇, 曹明鹏, 申淼, 杨新梅. MgCl2-NaCl-KCl熔盐体系中金属Mg对316H不锈钢的缓蚀性能研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 80-86.
[7] 王欣彤, 陈旭, 韩镇泽, 李承媛, 王岐山. 硫酸盐还原菌作用下2205双相不锈钢在3.5%NaCl溶液中应力腐蚀开裂行为研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 43-50.
[8] 史昆玉, 吴伟进, 张毅, 万毅, 于传浩. TC4表面沉积Nb涂层在模拟体液环境下的电化学性能研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 71-79.
[9] 郑黎, 王美婷, 于宝义. 镁合金表面冷喷涂技术研究进展[J]. 中国腐蚀与防护学报, 2021, 41(1): 22-28.
[10] 于宏飞, 邵博, 张悦, 杨延格. 2A12铝合金锆基转化膜的制备及性能研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 101-109.
[11] 贾世超, 高佳祺, 郭浩, 王超, 陈杨杨, 李旗, 田一梅. 再生水水质因素对铸铁管道的腐蚀研究[J]. 中国腐蚀与防护学报, 2020, 40(6): 569-576.
[12] 赵鹏雄, 武玮, 淡勇. 空间分辨技术在金属腐蚀原位监测中的应用[J]. 中国腐蚀与防护学报, 2020, 40(6): 495-507.
[13] 马鸣蔚, 赵志浩, 荆思文, 于文峰, 谷义恩, 王旭, 吴明. 17-4 PH不锈钢在含SRB的模拟海水中的应力腐蚀开裂行为研究[J]. 中国腐蚀与防护学报, 2020, 40(6): 523-528.
[14] 岳亮亮, 马保吉. 超声表面滚压对AZ31B镁合金腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2020, 40(6): 560-568.
[15] 艾芳芳, 陈义庆, 钟彬, 李琳, 高鹏, 伞宏宇, 苏显栋. T95油井管在酸性油气田环境中的应力腐蚀开裂行为及机制[J]. 中国腐蚀与防护学报, 2020, 40(5): 469-473.