Please wait a minute...
中国腐蚀与防护学报  2016, Vol. 36 Issue (2): 113-120    DOI: 10.11902/1005.4537.2015.032
  本期目录 | 过刊浏览 |
模拟压水堆二回路水环境中温度对690合金电化学腐蚀行为的影响
汪家梅1,陆辉1,段振刚1,张乐福1(),孟凡江2,徐雪莲2
1. 上海交通大学核能科学与工程学院 上海 200240
2. 上海核工程研究设计院 上海 200233
Effect of Temperature on Electrochemical Behavior of Alloy 690 in Simulated PWR Secondary Circuit Water
Jiamei WANG1,Hui LU1,Zhengang DUAN1,Lefu ZHANG1(),Fanjiang MENG2,Xuelian XU2
1. School of Nuclear Science and Engineering, Shanghai Jiaotong University, Shanghai 200240, China
2. Shanghai Nuclear Engineering Research &Design Institute, Shanghai 200233, China
全文: PDF(1409 KB)   HTML
摘要: 

通过EIS和动电位极化曲线的测量,并结合SEM观察、EDS和XPS分析,研究了模拟压水堆核电站 (PWR) 二回路服役水环境异常工况 (100 μg/L DO+100 μg/L Cl-+ETA) 中溶液温度 (150~285 ℃) 对690合金电化学腐蚀行为的影响机理。结果表明:温度升高,690合金自腐蚀电位降低,腐蚀电流密度增加,钝化电位区间缩短;表面氧化膜厚度增加,颗粒增大,双层氧化膜特征越明显,但致密度和稳定性降低,导致其耐蚀性降低,合金腐蚀速率增加。

关键词 690合金压水堆高温电化学腐蚀二回路    
Abstract

The effect of temperature (150~285 ℃) on the electrochemical corrosion behavior of Alloy 690 in stimulated pressurized water reactor (PWR) secondary circuit water environments was investigated by means of EIS, potentiodynamic polarization curves, SEM with EDS and XPS. The results revealed that, with the increasing temperature, the free corrosion potential decreased, corrosion current density increased, passive potential region shrank, the thicknesses of oxide scales and the size of oxide particles increased. Meanwhile, the double-layer characteristics of oxide scales became more obvious, but the compactness and stability of oxide scales degraded dramatically, resulting in the deterioration of corrosion resistance and the increase of corrosion rate of Alloy 690.

Key wordsAlloy 690    PWR    high-temperature electrochemical corrosion    secondary circuit water
    
基金资助:大型先进压水堆核电站重大专项项目 (2010ZX06004-01) 资助

引用本文:

汪家梅,陆辉,段振刚,张乐福,孟凡江,徐雪莲. 模拟压水堆二回路水环境中温度对690合金电化学腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2016, 36(2): 113-120.
Jiamei WANG, Hui LU, Zhengang DUAN, Lefu ZHANG, Fanjiang MENG, Xuelian XU. Effect of Temperature on Electrochemical Behavior of Alloy 690 in Simulated PWR Secondary Circuit Water. Journal of Chinese Society for Corrosion and protection, 2016, 36(2): 113-120.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2015.032      或      https://www.jcscp.org/CN/Y2016/V36/I2/113

图1  试样示意图
图2  实验回路示意图
图3  690合金在模拟PWR二回路高温高压水 (100 μg/L DO+100 μg/L Cl-+ETA) 中不同温度下的EIS谱
图4  拟合690合金EIS结果的等效电路图
图5  690合金的溶液电阻和极化电阻随温度的变化
图6  690合金在模拟PWR二回路水中不同温度下的极化曲线
图7  690合金的电化学参数随温度的变化
图8  钝化电流密度Ip与温度的Arrhenius关系
图9  690合金在模拟PWR二回路水中不同温度下浸泡30 h后的氧化膜形貌
Temperature / ℃ Position O K Fe K Cr K Ni K
150 1 6.40 9.52 26.32 49.70
2 --- 9.29 29.13 54.86
200 1 10.59 9.87 25.76 46.24
2 27.50 15.14 18.63 30.97
250 1 9.61 9.56 25.30 47.46
2 6.39 8.52 25.27 48.77
285 1 20.28 4.57 20.32 36.65
2 19.58 12.15 21.79 41.84
表1  690合金在模拟PWR二回路水中不同温度下氧化膜的EDS结果
图10  690合金氧化膜中主要组成元素的原子分数随溅射深度的变化
图11  690合金氧化膜中主要元素的XPS谱
图12  690合金双层氧化膜结构示意图
[1] Dutta R S.Corrosion aspects of Ni-Cr-Fe based and Ni-Cu based steam generator tube materials[J]. J. Nucl. Mater., 2009, 393(2): 343
[2] Staehle R W, Gorman J A.Quantitative assessment of submodes of stress corrosion cracking on the secondary side of steam generator tubing in pressurized water reactors: Part 3[J]. Corrosion, 2004, 60(2): 115
[3] Huang J, Wu X, Han E-H.Electrochemical properties and growth mechanism of passive films on Alloy 690 in high-temperature alkaline environments[J]. Corros. Sci., 2010, 52(10): 3444
[4] Abraham G J, Bhambroo R, Kain V, et al.Electrochemical characterization of oxide film formed at high temperature on Alloy 690[J]. Nucl. Eng. Des., 2012, 243: 69
[5] Shih C H, Yoshitsugu M.Nuclear Reactor Material Handbook [M]. Beijing: Atomic Energy Press, 1983
[5] (长谷川正义, 三岛良绩. 核反应堆材料手册 [M]. 北京: 原子能出版社, 1983)
[6] Greeley R S, Smith W T, Stoughton R W, et al.Electromotive force studies in aqueous solutions at elevated temperatures. 1. The standard potential of the silver-silver chloride electrode1[J]. J. Phys.Chem., 1960, 64(12): 1861
[7] Bosch R W, Wéber M, Vankeerberghen M.In-pile electrochemical measurements on AISI 304 and AISI 306 in PWR conditions-Experimental results[J]. J. Nucl. Mater., 2007, 360(3): 304
[8] Li X H, Wang J Q, Han E-H, et al.Corrosion behavior of nuclear grade alloys 690 and 800 in simulated high temperature and high pressure primary water of pressurized water reactor[J]. Acta Metall. Sin., 2012, 48(8): 941
[8] (郦晓慧, 王俭秋, 韩恩厚等. 核级商用690合金和800合金在模拟压水堆核电站一回路高温高压水中的腐蚀行为研究[J]. 金属学报, 2012, 48(8): 941)
[9] Sun H, Wu X, Han E-H, et al.Effects of pH and dissolved oxygen on electrochemical behavior and oxide films of 304SS in borated and lithiated high temperature water[J]. Corros. Sci., 2012, 59: 334
[10] Huang J, Wu X, Han E-H.Influence of pH on electrochemical properties of passive films formed on Alloy 690 in high temperature aqueous environments[J]. Corros. Sci., 2009, 51(12): 2976
[11] Huang J, Wu X, Han E-H.Electrochemical properties and growth mechanism of passive films on Alloy 690 in high-temperature alkaline environments[J]. Corros. Sci., 2010, 52(10): 3444
[12] Lemire R J, McRae G A. The corrosion of Alloy 690 in high-temperature aqueous media-thermodynamic considerations[J]. J. Nucl. Mater., 2001, 294(1): 141
[13] Douglas L, Zyzes F C.The corrosion of iron in high-temperature water (Part 1-corrosion rate measurements)[J]. Corrosion, 1957, 13(6): 19
[14] Ziemniak S E, Hanson M.Corrosion behavior of NiCrFe Alloy 600 in high temperature, hydrogenated water[J]. Corros. Sci., 2006, 48(2): 498
[15] Hermas A A, Salam M A, Al-Juaid S S, et al. Electrosynthesis and protection role of polyaniline-polvinylalcohol composite on stainless steel[J]. Prog. Org. Coat., 2014, 77(2): 403
[16] Liu X, Wu X, Han E-H.Effect of Zn injection on established surface oxide films on 316L stainless steel in borated and lithiated high temperature water[J]. Corros. Sci., 2012, 65: 136
[17] McIntyre N S, Cook M G. X-ray photoelectron studies on some oxides and hydroxides of cobalt, nickel, and copper[J]. Anal. Chem., 1975, 47(13): 2208
[18] Machet A, Galtayries A, Marcus P, et al.XPS study of oxides formed on nickel-base alloys in high-temperature and high-pressure water[J]. Surf. Interface Anal., 2002, 34(1): 197
[19] Pourbaix M.Atlas of Electrochemical Equilibria in Aqueous Solutions[M]. 2nd. Ed. Houston: NACE International, 1974
[20] Lister D H, Davidson R D, McAlpine E. The mechanism and kinetics of corrosion product release from stainless steel in lithiated high temperature water[J]. Corros. Sci., 1987, 27(2): 113
[21] Bazan J C, Arvia A J.The diffusion of ferro-and ferricyanide ions in aqueous solutions of sodium hydroxide[J]. Electrochim. Acta, 1965, 10(10): 1025
[22] Ziemniak S E, Hanson M.Corrosion behavior of NiCrFe Alloy 600 in high temperature, hydrogenated water[J]. Corros. Sci., 2006, 48(2): 498
[23] Ziemniak S E, Hanson M.Corrosion behavior of NiCrMo Alloy 625 in high temperature, hydrogenated water[J]. Corros. Sci., 2003, 45(7): 1595
[24] Ziemniak S E, Hanson M, Sander P C.Electropolishing effects on corrosion behavior of 304 stainless steel in high temperature, hydrogenated water[J]. Corros. Sci., 2008, 50(9): 2465
[25] Was G S, Ampornrat P, Gupta G, et al.Corrosion and stress corrosion cracking in supercritical water[J]. J. Nucl. Mater., 2007, 371(1): 176
[26] Robertson J.The mechanism of high temperature aqueous corrosion of steel[J]. Corros. Sci., 1989, 29(11/12): 1275
[1] 刘晓强,徐雪莲,谭季波,王媛,吴欣强,郑宇礼,孟凡江,韩恩厚. 反应堆冷却剂环境对690合金传热管疲劳性能影响研究[J]. 中国腐蚀与防护学报, 2015, 35(3): 213-219.
[2] 海正银, 王辉, 辛长胜, 蔡敏, 秦博, 陈童. 加锌对690合金在高温水中形成的氧化膜的影响[J]. 中国腐蚀与防护学报, 2014, 34(6): 532-536.
[3] 段振刚, 张乐福, 王力, 徐雪莲, 石秀强. 注锌对316L奥氏体不锈钢氧化膜成分的影响[J]. 中国腐蚀与防护学报, 2014, 34(3): 249-252.
[4] 海正银, 王辉, 曹林园, 胡勇. 模拟压水堆一回路条件添加Pt技术研究[J]. 中国腐蚀与防护学报, 2014, 34(3): 253-256.
[5] 段振刚, 张乐福, 姜苏青, 石秀强, 徐雪莲. PWR水环境中Zn对Co在氧化膜中沉积行为的影响[J]. 中国腐蚀与防护学报, 2014, 34(2): 192-194.
[6] 孙荣鹏 王俭秋 韩恩厚. 乙醇胺ETA浓度对核电站二回路碳钢和镍基合金690腐蚀的影响[J]. 中国腐蚀与防护学报, 2013, 33(2): 97-103.
[7] 冯万里,张乐福,马明娟. 轧制变形对690合金特殊晶界比例及耐晶间腐蚀性能的影响[J]. 中国腐蚀与防护学报, 2012, 32(4): 296-299.
[8] 乔岩欣,任爱,刘飞华. 690合金在NaCl溶液中的电化学行为研究[J]. 中国腐蚀与防护学报, 2012, 32(2): 146-150.
[9] 郦晓慧,王俭秋,韩恩厚,柯伟. 不同镍基堆焊材料在高温高压水中的应力腐蚀行为研究[J]. 中国腐蚀与防护学报, 2011, 31(6): 436-440.