Please wait a minute...
中国腐蚀与防护学报  2014, Vol. 34 Issue (6): 515-522    DOI: 10.11902/1005.4537.2013.206
  本期目录 | 过刊浏览 |
Ti对Zn-5Al合金组织及耐腐蚀性能的影响
刘子利(), 刘希琴, 王怀涛, 胡金东, 侯志国
南京航空航天大学材料科学与技术学院 南京 210016
Effect of Ti Addition on Microstructure and Corrosion Property of Zn-5Al Alloy
LIU Zili(), LIU Xiqin, WANG Huaitao, HU Jindong, HOU Zhiguo
College of Materials Science and Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
全文: PDF(6701 KB)   HTML
摘要: 

采用金相观察、电化学性能测试、SEM和EDS分析等方法研究了Ti对Zn-5Al合金的组织及耐蚀性能的影响。结果表明:在Zn-5Al合金中加入Ti可细化枝状的β-Zn相,增大共晶组织含量。当Ti含量为0.15%时,初生β-Zn相完全消失,Zn-5Al合金为全共晶组织组成,随着Ti含量进一步升高到0.2%,合金中出现了块状的Al-Ti-Zn三元相。添加Ti提高了Zn-5Al合金的耐蚀性能,Zn-5Al-0.15Ti合金的腐蚀速率和自腐蚀电流密度均最小,分别为0.85 μgcm-2d-1和1.403 μA/cm2,且其高频阻抗和低频扩散阻抗均最大。全共晶组织的Zn-5Al-0.15Ti合金发生的是均匀性腐蚀。

关键词 TiZn-5Al合金腐蚀性能    
Abstract

The microstructure and corrosion properties of Zn-5Al-xTi alloy have been investigated by OM, SEM, EDS and electrochemical tests etc. The results show that a small amount of Ti addition in Zn-5Al alloy refines the primary β-Zn phase and increases the percentage of the eutectic structure. With the addition of 0.15%Ti, almost all β-Zn phase disappears in the Zn-5Al-0.15Ti alloy and therewith which exhibits an entire eutectic microstructure. With increasing the Ti content to 0.2%, a new Al-Ti-Zn ternary phase appears in the alloy. The addition of Ti increases the corrosion resistance of Zn-5Al alloy. Among others, the corrosion rate and corrosion current density of Zn-5Al-0.15Ti alloy reach a minimum of 0.85 μgcm-2d-1 and 1.403 μA/cm2 respectively, while the impedance at high frequency or the diffusion impedance at low frequency all reach a maximum. Uniform corrosion occurs for the Zn-5Al-0.15Ti alloy with entire eutectic microstructure.

Key wordsTi    Zn-5Al alloy    corrosion property
    
ZTFLH:  TG174  
基金资助:江苏省研究生工作站项目资助
作者简介: null

刘子利,男,1968年生,教授,博士,研究方向为金属材料及其精密成形技术

引用本文:

刘子利, 刘希琴, 王怀涛, 胡金东, 侯志国. Ti对Zn-5Al合金组织及耐腐蚀性能的影响[J]. 中国腐蚀与防护学报, 2014, 34(6): 515-522.
Zili LIU, Xiqin LIU, Huaitao WANG, Jindong HU, Zhiguo HOU. Effect of Ti Addition on Microstructure and Corrosion Property of Zn-5Al Alloy. Journal of Chinese Society for Corrosion and protection, 2014, 34(6): 515-522.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2013.206      或      https://www.jcscp.org/CN/Y2014/V34/I6/515

Alloy Al Ti Zn
1 5 --- Bal.
2 5 0.1 Bal.
3 5 0.15 Bal.
4 5 0.2 Bal.
表1  Zn-Al合金的化学成分
图1  Zn-5Al-xTi合金的显微组织
图2  Zn-5Al-0.2Ti合金的SEM像与EDS结果
图3  Zn-5Al-xTi合金的腐蚀速率
图4  Zn-5Al-xTi合金在3.5%NaCl溶液中自腐蚀电位Ecorr随时间的变化
图5  Zn-5Al-xTi合金在3.5%NaCl溶液中的极化曲线
Alloy Icorr
μA/cm2
bc
mV/dec
ba
mV/dec
Zn-5Al 6.4 56 34
Zn-5Al-0.1Ti 3.6 38 28
Zn-5Al-0.15Ti 1.1 23 14
Zn-5Al-0.2Ti 1.5 31 25
表2  极化曲线经Tafel拟合得到的Icorr, ba 和 bc值
图6  Zn-5Al-xTi合金在3.5%NaCl溶液中浸泡不同时间的Nyquist图
图7  Zn-5Al-xTi合金在3.5%NaCl溶液中浸泡时阻抗值RH随时间的变化曲线
图8  Zn-5Al-xTi合金在3.5%NaCl溶液中浸泡不同时间后的Y0值
图9  4种合金在3.5%NaCl溶液中静置不同时间后的腐蚀形貌
图10  Zn-5Al-xTi合金在3.5%NaCl溶液中浸泡480 h后表面的SEM像
[1] Lu J T, Chen J H, Xu Q Y, et al. Influence of adding Ni in zinc bath on the microstructure of hot dip galvanized coating[J]. Chin. J. Nonferrous Met., 1996, 6(4): 87-100
[1] (卢锦堂, 陈锦虹, 许乔瑜等. 锌浴加镍对热镀锌层组织的影响[J]. 中国有色金属学报, 1996, 6(4): 87-100)
[2] Che C S, Lu J T, Chen J H, et al. Interpretation model of sandelin effect mechanism in hot dip galvanizing[J]. Mater. Prot., 2004, 37(8): 26-28
[2] (车淳山, 卢锦堂, 陈锦虹等. 热镀锌中圣德林效应微观机理的解释模型[J]. 材料保护, 2004, 37(8): 26-28)
[3] Wang H T, Liu Z L, Xu W L, et al. Influence of Al contents on the corrosion performance of hot-dip zinc alloy[J]. Corros. Prot., 2013, 34(2): 1-5
[3] (王怀涛, 刘子利, 徐文龙等. 铝含量对热浸镀锌合金耐蚀性的影响[J]. 腐蚀与防护, 2013, 34(2): 1-5)
[4] Liu Z L, Xu W L, Wang H T, et al. An Zn-Al-Ti-Re alloy and the manufacturing method for hot-dip zinc-plated steel [P]. China: CN201110088261.X, 2011-08-24
[4] (刘子利, 徐文龙, 王怀涛等. 一种用于热浸镀钢板的锌-铝-钛-稀土合金及其制备方法 [P]. 中国专利: CN201110088261.X, 2011-08-24)
[5] Wei S C, Zhu X F, Wei X J. Effects of aluminum and titanium on hot galvanizing coating[J]. Mater. Prot., 2003, 36(9): 28-30
[5] (魏世承, 朱晓飞, 魏绪钧. 铝和钛对热镀锌层的影响[J].材料保护, 2003, 36(9): 28-30)
[6] Gui Y. Electrochemical behavior of hot-dip zinc-titanium alloy galvanized steel sheet[J]. Surf. Technol., 2008, 37(5): 33-35
[6] (桂艳. 热浸锌-钛合金镀层钢板的电化学行为[J]. 表面技术, 2008, 37(5): 33-35)
[7] Culcasi J D, Sere P R, Elsner C I, et al. Control of the growth of zinc-iron phases in the hot-dip galvanizing process[J]. Surf. Coat. Technol., 1999, 122(1): 21-23
[8] García F, Salinas A, Nava E. The role of Si and Ti additions on the formation of the alloy layer at the interface of hot-dip Al-Zn coatings on steel strips[J]. Mater. Lett., 2006, 60: 775-778
[9] Zhao X O. Experimental study on rare earth to improve the corrosion resistance of zinc base alloy[J]. J. Chin. Rare Earth Soc., 199210: 243-246
[9] (赵显欧. 稀土改善锌基合金抗蚀性的实验研究[J]. 中国稀土学报, 1992, 10: 243-246)
[10] Jin H M, Li Y, Liu H L, et al. Study on the behavior of additives in steel hot dip galvanizing by DFT calculations[J]. Chem. Mater., 2000, 12: 1879-1883
[11] Vassilev G P, Liu X J, Ishida K. Reaction kinetics and phase diagram studies in the Ti-Zn system[J]. J. Alloys Compd., 2004, 75(3): 162-170
[12] Delsante S, Ghosh G, Borzone G. A calorimetric study of alloys along the Ti(Zn, Al)3 section[J]. Calphad: Comput. Coupling Phase Diagrams Thermochem., 2009, 33: 50-54
[13] Souto R M, Fernandez-Merida L, Gonzalez S, et al. Comparative EIS study of different Zn-based intermediate metallic layers in coil-coated steels[J]. Corros. Sci., 2006, 48(5): 1182-1192
[14] Hamlaoui Y, Pedraza F, Tifouti L. Corrosion monitoring of galvanized coatings through electrochemical impedance spectroscopy[J]. Corros. Sci., 2008, 50(6): 1558-1566
[15] Rosalbino F, Angelini E, Maccio D, et al. Application of EIS to assess the effect of rare earths small addition on the corrosion behaviour of Zn-5% Al (Galfan) alloy in neutral aerated sodium chloride solution[J]. Electrochim. Acta, 2009, 54(4): 1204-1209
[16] Elola A S, Otero T F, Porro A. Evolution of the pitting of aluminum exposed to the atmosphere[J]. Corrosion, 1992, 48(10): 854-863
[17] Chen C F, Lu M X, Zhao G X, et al. Electrochemical characteristics of CO2 corrosion of well tube steels with corrosion scales[J]. J. Chin. Soc. Corros. Prot., 2003, 23(3): 140-143
[17] (陈长风, 路民旭, 赵国仙等. 腐蚀产物膜覆盖条件下油套管钢CO2 腐蚀电化学特征[J]. 中国腐蚀与防护学报, 2003, 23(3): 140-143)
[1] 乔及森, 夏宗辉, 刘立博, 许佳敏, 刘旭东. 铝镁双金属反向等温包覆挤压棒材耐腐蚀性能[J]. 中国腐蚀与防护学报, 2021, 41(2): 255-262.
[2] 韩月桐, 张鹏超, 史杰夫, 李婷, 孙俊才. 质子交换膜燃料电池中TA1双极板的表面改性研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 125-130.
[3] 史昆玉, 吴伟进, 张毅, 万毅, 于传浩. TC4表面沉积Nb涂层在模拟体液环境下的电化学性能研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 71-79.
[4] 张琦超, 黄彦良, 许勇, 杨丹, 路东柱. 高放射性核废料钛储罐深地质环境中氢吸收及氢脆研究进展[J]. 中国腐蚀与防护学报, 2020, 40(6): 485-494.
[5] 解璇, 刘莉, 王福会. TiO2的制备及表面修饰工艺对其光电化学阴极保护性能的影响[J]. 中国腐蚀与防护学报, 2020, 40(2): 123-130.
[6] 白苗苗, 白子恒, 蒋立, 张东玖, 姚琼, 魏丹, 董超芳, 肖葵. H62黄铜/TC4钛合金焊接件腐蚀行为研究[J]. 中国腐蚀与防护学报, 2020, 40(2): 159-166.
[7] 沈树阳, 王东胜, 孙士斌, 杨剔, 赵前进, 王鑫, 张亚飞, 常雪婷. 深冷处理对EH40极寒环境船用钢板的海水腐蚀性能影响[J]. 中国腐蚀与防护学报, 2020, 40(2): 151-158.
[8] 王乐,易丹青,刘会群,蒋龙,冯春. Ru对Ti-6Al-4V合金腐蚀行为的影响及机理研究[J]. 中国腐蚀与防护学报, 2020, 40(1): 25-30.
[9] 张瑞,李雨,关蕾,王冠,王福雨. 热处理对激光选区熔化Ti6Al4V合金电化学腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2019, 39(6): 588-594.
[10] 欧阳跃军,胡婷,王佳音,谢治辉. 镁合金表面层状双氢氧化物的电化学沉积和表征[J]. 中国腐蚀与防护学报, 2019, 39(5): 453-457.
[11] 艾鹏,刘礼祥,李晓罡,姜文涛. TiAlSiN涂层对γ-TiAl基合金抗高温氧化性能的影响[J]. 中国腐蚀与防护学报, 2019, 39(4): 306-312.
[12] 史昆玉,张进中,张毅,万毅. Nb2N涂层制备及其耐腐蚀性能研究[J]. 中国腐蚀与防护学报, 2019, 39(4): 313-318.
[13] 严少坤,郑大江,韦江,宋光铃,周廉. 钝性纯Ti在人工海水中的电化学活化行为研究[J]. 中国腐蚀与防护学报, 2019, 39(2): 123-129.
[14] 廖彤,马峥,李蕾蕾,马秀敏,王秀通,侯保荣. Fe2O3/TiO2纳米复合材料对304不锈钢的光生阴极保护性能[J]. 中国腐蚀与防护学报, 2019, 39(1): 36-42.
[15] 赖德林,孔纲,车淳山. 硅酸盐封闭对TiO2转化膜耐蚀性的影响[J]. 中国腐蚀与防护学报, 2018, 38(6): 607-614.