Please wait a minute...
中国腐蚀与防护学报  2019, Vol. 39 Issue (4): 313-318    DOI: 10.11902/1005.4537.2018.116
  研究报告 本期目录 | 过刊浏览 |
Nb2N涂层制备及其耐腐蚀性能研究
史昆玉(),张进中,张毅,万毅
武汉工程大学机电工程学院 武汉 430205
Preparation and Corrosion Resistance of Nb2N Coating on TC4 Ti-alloy
SHI Kunyu(),ZHANG Jinzhong,ZHANG Yi,WAN Yi
Department of Mechanical and Electrical Engineering, Wuhan Institute of Technology, Wuhan 430205, China
全文: PDF(2536 KB)   HTML
摘要: 

采用双阴极等离子溅射沉积技术在TC4 (Ti-6Al-4V) 合金基体表面制备了Nb2N涂层,利用XRD,SEM和EDS研究涂层的微观组织结构;使用划痕法测试了涂层与基体的结合力;采用开路电位 (OCP) 测量、动电位极化、电化学阻抗谱 (EIS) 等电化学测试技术,研究所制备的Nb2N薄膜在3.5% (质量分数) NaCl溶液中的电化学腐蚀行为,并与TC4基体进行比较。结果表明:所制备涂层分为过渡层和沉积层,涂层厚度约为21 μm。涂层连续致密且光滑,没有明显孔洞或间隙。Nb2N涂层相较于TC4基体开路电位到达稳态值时间较短且稳态值较高;Nb2N涂层点腐蚀电位更高,腐蚀电流更低;涂层阻抗谱数据呈现单一容抗弧特性,容抗弧值高于TC4基体的,且相位角曲线最大值更大并且最大值处具有更宽的区间。

关键词 双阴极等离子溅射技术Nb2N涂层微观结构耐腐蚀性能TC4(Ti-6Al-4V)合金    
Abstract

Nb2N coating was deposited onto TC4 (Ti-6Al-4V) substrates via a double cathode glow discharge plasma method. The microstructure of the coating was characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy dispersive spectrometer (EDS). The adhesive property of Nb2N coating to the substrate was assessed by scratch test. While the electrochemical behavior in 3.5% (mass fraction) NaCl solution of the coating was investigated with electrochemical techniques, such as open circuit potential (OCP) measurement, potentiodynamic polarization and EIS. Result shows that the as-deposited coating of 21 μm in thickness is dense with a homogeneous microstructure without obvious voids or micro-crack. Compared with TC4 matrix, the open-circuit potential of Nb2N coating can reach a higher steady-state value within a shorter time interval, in other words, the coating presents higher corrosion potential (Ecorr) and lower corrosion current. The data of EIS show that the Nb2N coating shows a single capacitive reactance arc with higher capacitive reactance, larger phase angle maximum, as well as wider phase angle plateau, in the contrary to those of the bare TC4 Ti-alloy.

Key wordsdouble cathode glow discharge plasma method    Nb2N coating    microstructure    corrosion resistance    TC4(Ti-6Al-4V) alloy
收稿日期: 2018-08-22     
ZTFLH:  TG174.445  
基金资助:武汉工程大学科学研究基金(k201519)
通讯作者: 史昆玉     E-mail: shikunyuwh@126.com
Corresponding author: Kunyu SHI     E-mail: shikunyuwh@126.com
作者简介: 史昆玉,女,1972年生,博士,副教授

引用本文:

史昆玉,张进中,张毅,万毅. Nb2N涂层制备及其耐腐蚀性能研究[J]. 中国腐蚀与防护学报, 2019, 39(4): 313-318.
Kunyu SHI, Jinzhong ZHANG, Yi ZHANG, Yi WAN. Preparation and Corrosion Resistance of Nb2N Coating on TC4 Ti-alloy. Journal of Chinese Society for Corrosion and protection, 2019, 39(4): 313-318.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2018.116      或      https://www.jcscp.org/CN/Y2019/V39/I4/313

图1  Nb2N涂层的XRD谱
图2  Nb2N涂层的横截面SEM像及对应A和B点处EDS分析结果
图3  Nb2N涂层划痕法测试过程的声发射信号
图4  Nb2N涂层和TC4基体在3.5%NaCl溶液中的开路电位
图5  Nb2N涂层和TC4基体在3.5%NaCl溶液中的极化曲线
Sample

Ecorr

V vs SCE

Icorr

A·cm-2

RP 106 Ω·cm2Pe%
Ti-6Al-4V-0.421.21×10-71.46---
Nb2N coating-0.069.41×10-94.5892.22
表1  极化曲线测试结果
图6  Nb2N涂层和TC4基体在3.5%NaCl溶液中的Nyquist和Bode图
图7  Nb2N涂层和钛合金基体在3.5%NaCl溶液中的等效电路图
SampleRct / Ω·cm2Q1 / Ω-1·cm-2·snn1R1 / Ω·cm2Q2 / Ω-1·cm-2·snn2R2 / Ω·cm2χ2
Nb2N coating25.018.82×10-80.8947480.098.928×10-60.985.136×1071.49×10-3
TC426.294.549×10-70.819214.211.125×10-50.906.935×1061.29×10-3
表2  阻抗谱等效电路中各参比元件拟合值
[1] LeyensC, PetersM. Titanium and Titanium Alloys [M]. Weinheim: Wiley-VCH, 2003: 151
[2] BudinskiK G. Tribological properties of titanium alloys [J]. Wear, 1991, 151: 203
3 Chinese Society for Corrosion and Protection. Corrosion Resistance of Non-ferrous Metals and its Application [M]. Beijing: Chemical Industry Press, 1995: 75
3 (中国腐蚀与防护学会. 有色金属的耐腐蚀性及其应用 [M]. 北京: 化学工业出版社, 1995: 75)
[4] WangH F, LiJ, YangH L, et al. Fabrication, characterization and in vitro biocompatibility evaluation of porous Ta-Nb alloy for bone tissue engineering [J]. Mater. Sci. Eng., 2014, C40: 71
[5] Br?kaJ, HotovyI. Processes on the target, discharge and NbN film behaviour in reactive dc magnetron deposition [J]. Vacuum, 1995, 46: 1407
[6] LiuC, BiQ, MatthewsA. Tribological and electrochemical performance of PVD TiN coatings on the femoral head of Ti-6Al-4V artificial hip joints [J]. Surf. Coat. Technol., 2003, 163/164: 597
[7] WongM S, SproulW D, ChuX, et al. Reactive magnetron sputter deposition of niobium nitride films [J]. J. Vac. Sci. Technol., 1993, 11A: 1528
[8] XuZ, LiuX, ZhangP, et al. Double glow plasma surface alloying and plasma nitriding [J]. Surf. Coat. Technol., 2007, 201(9-11): 4822
9 SongJ H, ZhangT, HouJ D, et al. The influences of deposition temperature on the microstructure of niobium nitride films [J]. J. Beijing Normal Univ. (Nat. Sci.), 2001, 37: 41
9 (宋教花, 张涛, 侯君达等. 沉积温度对NbN膜层微观结构的影响 [J]. 北京师范大学学报 (自然科学版), 2001, 37: 41)
[10] ChihiT, ParlebasJ C, GuemmazM. First principles study of structural, elastic, electronic and optical properties of Nb2N and Ta2N compounds [J]. Phys. Status Solidi, 2011, 248B: 2787
[11] YangX Z. The fabrication and Research of NbN and NbSi flims applying in SNSPDs [D]. Nanjing: Nanjing University, 2015
[11] (杨小忠. 用于超导单光子探测器的氮化铌与铌硅薄膜制备研究 [D]. 南京: 南京大学, 2015)
[12] DemyashevG M, TregulovV R, ChuzhkoR K. crystallization and structure of β-Nb2N and γ-Ta2N [J]. J. Cryst. Growth, 1983, 63: 135
[13] YinC M, XuL Q, JuZ C, et al. Cubic niobium nitride nanomaterials as anode materiasl in lithium ion rechargeable battery: Synthesis and property [J]. Chinese J. Inorg. Chem., 2012, 28: 2612
[13] (尹从明, 徐立强, 鞠治成等. 锂离子电池负极材料立方相氮化铌纳米材料的制备与性能 (英文) [J]. 无机化学学报, 2012, 28: 2612)
[14] HogmarkS, JacobsonS, LarssonM. Design and evaluation of tribological coatings [J]. Wear, 2000, 246: 20
[15] LaiD H. Influence of Al alloying on the properties of MoSi2: First-principles calculation and experiment study [D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2012
[15] (赖道辉. Al合金化对MoSi2性能的影响: 第一性原理计算与实验研究 [D]. 南京: 南京航空航天大学, 2012)
[16] MaasJ H, BastinG F, Van LooF J J, et al. On the texture in diffusion-grown layers of silicides and germanides with the FeB structure, MeX (Me=Ti, Zr; X=Si, Ge) or the ZrSi2 structure (ZrSi2, HfSi2, ZrGe2) [J]. J. Appl. Crystallogr., 1984, 17: 103
[17] BerkeleyD W, SallamH E M, Nayeb-HashemiH. The effect of pH on the mechanism of corrosion and stress corrosion and degradation of mechanical properties of AA6061 and Nextel 440 fiber-reinforced AA6061 composite [J]. Corros. Sci., 1998, 40: 141
[18] MansfeldF, ZhangG, ChenC. Evaluation of sealing methods for anodized aluminum alloys with electrochemical impedance spectroscopy (EIS) [J]. Plat. Surf. Finish., 1997, 84: 72
[1] 韩月桐, 张鹏超, 史杰夫, 李婷, 孙俊才. 质子交换膜燃料电池中TA1双极板的表面改性研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 125-130.
[2] 张雨轩, 陈翠颖, 刘宏伟, 李伟华. 铝合金霉菌腐蚀研究进展[J]. 中国腐蚀与防护学报, 2021, 41(1): 13-21.
[3] 史昆玉, 吴伟进, 张毅, 万毅, 于传浩. TC4表面沉积Nb涂层在模拟体液环境下的电化学性能研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 71-79.
[4] 郑黎, 王美婷, 于宝义. 镁合金表面冷喷涂技术研究进展[J]. 中国腐蚀与防护学报, 2021, 41(1): 22-28.
[5] 魏征, 马保吉, 李龙, 刘潇枫, 李慧. 镁合金表面超声滚压预处理对微弧氧化膜耐蚀性能的影响[J]. 中国腐蚀与防护学报, 2021, 41(1): 117-124.
[6] 于宏飞, 邵博, 张悦, 杨延格. 2A12铝合金锆基转化膜的制备及性能研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 101-109.
[7] 于浩冉, 张文丽, 崔中雨. 4种镁合金在Cl--NH4+-NO3-溶液体系中的腐蚀行为差异研究[J]. 中国腐蚀与防护学报, 2020, 40(6): 553-559.
[8] 岳亮亮, 马保吉. 超声表面滚压对AZ31B镁合金腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2020, 40(6): 560-568.
[9] 李聪玮, 杜双明, 曾志琳, 刘二勇, 王飞虎, 马付良. 电流密度对Ni-Co-B镀层微观结构及磨蚀性能的影响[J]. 中国腐蚀与防护学报, 2020, 40(5): 439-447.
[10] 张欣, 杨光恒, 王泽华, 曹静, 邵佳, 周泽华. 冷拉拔变形过程中含稀土铝镁合金腐蚀行为研究[J]. 中国腐蚀与防护学报, 2020, 40(5): 432-438.
[11] 丁清苗, 秦永祥, 崔艳雨. 大气环境中飞机构件的电偶腐蚀研究[J]. 中国腐蚀与防护学报, 2020, 40(5): 455-462.
[12] 闻洋, 熊林, 陈伟, 薛刚, 宋文学. 干湿循环下聚乙烯醇纤维混凝土抗Cl-渗透性能研究[J]. 中国腐蚀与防护学报, 2020, 40(4): 381-388.
[13] 郏义征, 王保杰, 赵明君, 许道奎. 固溶处理制度对挤压态Mg-Zn-Y-Nd镁合金在模拟体液中腐蚀和析氢行为的影响规律研究[J]. 中国腐蚀与防护学报, 2020, 40(4): 351-357.
[14] 胡露露, 赵旭阳, 刘盼, 吴芳芳, 张鉴清, 冷文华, 曹发和. 交流电场与液膜厚度对A6082-T6铝合金腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2020, 40(4): 342-350.
[15] 曹京宜, 方志刚, 陈晋辉, 陈志雄, 殷文昌, 杨延格, 张伟. 5083铝合金表面单致密微弧氧化膜的制备及其性能研究[J]. 中国腐蚀与防护学报, 2020, 40(3): 251-258.