Please wait a minute...
中国腐蚀与防护学报  2018, Vol. 38 Issue (6): 607-614    DOI: 10.11902/1005.4537.2017.199
  本期目录 | 过刊浏览 |
硅酸盐封闭对TiO2转化膜耐蚀性的影响
赖德林,孔纲(),车淳山
1. 华南理工大学材料科学与工程学院 广州 510640
Effect of Sodium Silicate Sealing on Corrosion Resistance of TiO2Conversion Film on Hot-dip Galvanized
Delin LAI,Gang KONG(),Chunshan CHE
1. Material Science and Engineering, South China University of Technology, Guangzhou 510640, China
全文: PDF(9999 KB)   HTML
摘要: 

采用Ti(SO4)2为钛源,双氧水为螯合剂,在热镀锌表面制备TiO2转化膜,研究了钝化时间对转化膜形貌和耐腐蚀性的影响。并采用硅酸钠溶液对TiO2转化膜进行封闭,研究膜层经封闭后形貌和耐蚀性的变化。结果表明,TiO2转化膜是由富钛颗粒组成;延长钝化时间,颗粒被ZnO/Zn(OH)2层覆盖。转化膜的存在可提高热镀锌层的耐蚀性。随着钝化时间的延长,表面出现裂纹,耐蚀性下降。经过硅酸钠封闭处理后,膜层表面存在大量微米级别的裂纹。短时间制备的转化膜,经过硅酸钠封闭后耐蚀性下降;而长时间制备的转化膜,经过硅酸钠封闭后耐蚀性增强。

关键词 TiO2硅酸钠转化膜耐腐蚀热镀锌    
Abstract

TiO2conversion film was prepared on the surface of hot-dip galvanized (HDG) carbon steel Q235 in Ti(SO4)2solution with hydrogen peroxide H2O2as chelating agent. Then the prepared TiO2conversion film was further sealed via immersion in sodium silicate solution. The effect of conversion treatment time on the morphology and corrosion resistance of the TiO2conversion film was studied. While the morphology, composition and corrosion resistance of the sodium silicate sealed TiO2conversion film were characterized by means of SEM with EDS, XRD, XPS and electrochemical measurements. The results show that the conversion film consists of a large amount of TiO2nanospheres, which formed on surface of the HDG steel after a short-time immersion, and then with the increasing immersion time, the nanospheres are gradually covered by reaction product ZnO/Zn(OH)2and crack appears on the conversion film, correspondingly the corrosion resistance of the HDG steel first increases and then decreases. A complete and dense TiO2conversion film shows better corrosion resistance, but cracks on the film can cause pitting corrosion. After sealing treatment, a sodium silicate film may further cover the pre-formed TiO2conversion film, however, there are a large number of cracks in micron scale on the surface of such complex film. In general, after sodium silicate sealing treatment, the corrosion resistance of the short-time formed conversion film decreases, in the contrary, the corrosion resistance of long-time formed conversion film increases.

Key wordsTiO2    NaO·SiO2    conversion film    corrosion resistance    hot-dip galvanizing
收稿日期: 2017-11-22     
ZTFLH:  TG174.4  
基金资助:国家自然科学基金(21103053);国家自然科学基金(91023002)
通讯作者: 孔纲     E-mail: konggang@scut.edu.con.
Corresponding author: Gang KONG     E-mail: konggang@scut.edu.con.
作者简介: 赖德林,男,1989年生,博士生

引用本文:

赖德林,孔纲,车淳山. 硅酸盐封闭对TiO2转化膜耐蚀性的影响[J]. 中国腐蚀与防护学报, 2018, 38(6): 607-614.
Delin LAI, Gang KONG, Chunshan CHE. Effect of Sodium Silicate Sealing on Corrosion Resistance of TiO2Conversion Film on Hot-dip Galvanized. Journal of Chinese Society for Corrosion and protection, 2018, 38(6): 607-614.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2017.199      或      https://www.jcscp.org/CN/Y2018/V38/I6/607

图1  T60试样的XPS谱及Zn2p和Ti2p的分峰图
图2  T60和T60-SiO2试样的XRD谱
图3  不同钝化时间制备的转化膜层的SEM像
图4  图3a中平整区域和颗粒处的EDS结果
图5  不同钝化时间处理制备的转化膜经硅酸钠封闭处理后的SEM像
图6  图5a中完整区域的EDS结果
图7  不同钝化时间制备的TiO2转化膜的动电位极化曲线
SampleIcorr/ μA·cm-2Ecorr/ V (vsSCE)Rp/ Ω·cm2
HDG14.20-1.030695
T101.045-1.1438679
T600.551-1.03712843
T3004.201-1.1022309
T180015.37-1.109581
表1  由图7拟合得到的结果
图8  不同钝化时间制备的TiO2转化膜的EIS结果
图9  经不同钝化时间处理获得的转化膜层的EIS模拟等效电路图
SampleRs/ Ω·cm2CPEf

Rf

Ω·cm2

CPEdlRct/ Ω·cm2
Yf/ sn·Ω-1·cm-2nfYdl/ sn·Ω-1·cm-2ndl
HDG1.623.1×10-50.804081.5×10-60.80368
T101.265.0×10-50.7518001.5×10-40.6710605
T600.956.5×10-50.6675201.3×10-30.856543
T3001.583.3×10-50.7616003.3×10-40.782750
T18001.029.4×10-50.702701.8×10-30.73750
表2  用图9中等效电路拟合EIS获得的各参数数值
图10  不同钝化时间制备的TiO2转化膜经硅酸钠封闭处理后的动电位极化曲线
SampleIcorr/ μA·cm-2Ecorr/ V (vsSCE)Rp/ Ω·cm2
T10-SiO20.41-1.0524122
T60-SiO20.31-1.01418854
T300-SiO20.75-1.0265700
T1800-SiO21.70-1.0133843
表3  由图10拟合得到的结果
图11  不同钝化时间制备的TiO2转化膜经硅酸钠封闭处理后的EIS图
图12  经硅酸钠封闭处理后的转化膜的EIS拟合等效电路图
SampleRsΩ·cm2CPEf

Rf

Ω·cm2

CPEdl

Rct

Ω·cm2

RLL
Yf/ sn·Ω-1·cm-2nfYdl/ sn·Ω-1·cm-2ndl
T10-SiO20.721.30×10-50.92112502.4×10-40.500323245005900
T60-SiO23.965.53×10-50.67974204.1×10-40.99016000650032000
T300--SiO22.092.42×10-50.82028001.0×10-40.470100551000038000
T1800--SiO21.671.94×10-50.87010013.2×10-40.7952200525013500
表4  由图12等效电路图拟合得到的EIS结果
[1] Phanasgaonkar A,Raja V S.Influence of curing temperature, silica nanoparticles- and cerium on surface morphology and corrosion behaviour of hybrid silane coatings on mild steel[J].Surf. Coat. Technol.,2009,203:2260
[2] Hamlaoui Y,Tifouti L,Pedraza F.Corrosion behaviour of molybdate-phosphate-silicate coatings on galvanized steel[J].Corros. Sci.,2009,51:2455
[3] Ramezanzadeh B,Attar M M.An evaluation of the corrosion resistance and adhesion properties of an epoxy-nanocomposite on a hot-dip galvanized steel (HDG) treated by different kinds of conversion coatings[J].Surf. Coat. Technol.,2011,205:4649
[4] Hara M,Ichino R,Okido M,et al.Corrosion protection property of colloidal silicate film on galvanized steel[J].Surf. Coat. Technol.,2003,169/170:679
[5] Masuda Y,Sugiyama T,Seo W S,et al.Deposition mechanism of anatase TiO2on self-assembled monolayers from an aqueous solution[J].Chem. Mater.,2003,15:2469
[6] Saarimaa V,Kauppinen E,Markkula A,et al.Microscale distribution of Ti-based conversion layer on hot dip galvanized steel[J].Surf. Coat. Technol.,2012,206:4173
[7] Song Y W,Dong K H,Shan D Y,et al.Study of the formation process of titanium oxides containing micro arc oxidation film on Mg alloys[J].Appl. Surf. Sci.,2014,314:888
[8] Xu X H,Zhang X H,Liu W M.Fabrication of superhydrophobic surfaces with perfluorooctanoic acid modified TiO2/polystyrene na-nocomposites coating[J].Colloids Surf.,2009,341A:21
[9] Yuan M R,Lu J T,Kong G.Effect of SiO2: Na2O molar ratio of sodium silicate on the corrosion resistance of silicate conversion coatings[J].Surf. Coat. Technol.,2010,204:1229
[10] Vargas M A,Rodríguez-Páez J E.Amorphous TiO2nanoparticles: Synthesis and antibacterial capacity[J]. J. Non-Cryst. Solids,2017,459:192
[11] Li Z Q,Zhu Y,Wang J T,et al.Size-controlled synthesis of dispersed equiaxed amorphous TiO2nanoparticles[J].Ceram. Int.,2015,41:9057
[12] Lupan O,Chow L,Chai G,et al.Fabrication and characterization of Zn-ZnO core-shell microspheres from nanorods[J].Chem. Phys. Lett.,2008,465:249
[13] Chigane M,Shinagawa T,Tani J I.Preparation of titanium dioxide thin films by indirect-electrodeposition[J].Thin Solid Films,2017,628:203
[14] Meng X Q,Li L Q,Zou K S,et al.The effect of SiO2on TiO2up-conversion photoluminescence film[J].Opt. Mater.,2014,37:367
[15] Beverskog B,Puigdomenech I.Revised pourbaix diagrams for zinc at 25-300 °C[J].Corros. Sci.,1997,39:107
[16] Park J H,Kim W S,Jo D H,et al.Effect of Ce conversion underlayer coating on the photo-catalytic activity of TiO2sol-gel film deposited on hot-dip GI[J]. J Ind Eng. Chem.,2014,20:1965
[17] Yuan M R,Lu J T,Kong G,et al.Self healing ability of silicate conversion coatings on hot dip galvanized steels[J].Surf. Coat. Technol.,2011,205:4507
[18] Kong G,Lu J T,Wu H J.Post treatment of silane and cerium salt as chromate replacers on galvanized steel[J]. J.Rare Earths,2009,27:164
[19] Liang M M,Wei Y H,Hou L F,et al.Fabrication of a super-hydrophobic surface on a magnesium alloy by a simple method[J]. J. Alloy. Compd.,2016,656:311
[1] 于宏飞, 邵博, 张悦, 杨延格. 2A12铝合金锆基转化膜的制备及性能研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 101-109.
[2] 韩月桐, 张鹏超, 史杰夫, 李婷, 孙俊才. 质子交换膜燃料电池中TA1双极板的表面改性研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 125-130.
[3] 史昆玉, 吴伟进, 张毅, 万毅, 于传浩. TC4表面沉积Nb涂层在模拟体液环境下的电化学性能研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 71-79.
[4] 解璇, 刘莉, 王福会. TiO2的制备及表面修饰工艺对其光电化学阴极保护性能的影响[J]. 中国腐蚀与防护学报, 2020, 40(2): 123-130.
[5] 杨寅初,傅秀清,刘琳,马文科,沈莫奇. 喷射电沉积Ni-P-BN(h)-Al2O3复合镀层的耐腐蚀性能研究[J]. 中国腐蚀与防护学报, 2020, 40(1): 57-62.
[6] 赵书彦,童鑫红,刘福春,翁金钰,韩恩厚,郦晓慧,杨林. 环氧富锌涂层防腐蚀性能研究[J]. 中国腐蚀与防护学报, 2019, 39(6): 563-570.
[7] 肖金涛,陈妍,邢明秀,鞠鹏飞,孟引根,王芳. 工艺参数对2195铝锂合金阳极氧化膜的耐蚀性影响[J]. 中国腐蚀与防护学报, 2019, 39(5): 431-438.
[8] 欧阳跃军,胡婷,王佳音,谢治辉. 镁合金表面层状双氢氧化物的电化学沉积和表征[J]. 中国腐蚀与防护学报, 2019, 39(5): 453-457.
[9] 史昆玉,张进中,张毅,万毅. Nb2N涂层制备及其耐腐蚀性能研究[J]. 中国腐蚀与防护学报, 2019, 39(4): 313-318.
[10] 冯旭,费敬银,李倍,张嫚,郭琪琪. 组分调制Ni/Cr多层膜合金化制备Ni-Cr合金覆盖层的耐腐蚀特性[J]. 中国腐蚀与防护学报, 2019, 39(2): 167-175.
[11] 廖彤,马峥,李蕾蕾,马秀敏,王秀通,侯保荣. Fe2O3/TiO2纳米复合材料对304不锈钢的光生阴极保护性能[J]. 中国腐蚀与防护学报, 2019, 39(1): 36-42.
[12] 邱萍, 杨连捷, 宋玉, 杨鸿飞. 添加DMF对TiO2薄膜光生阴极保护性能影响研究[J]. 中国腐蚀与防护学报, 2018, 38(3): 289-295.
[13] 蒋光锐, 刘广会. Zn-Al-Mg合金的凝固组织及其耐腐蚀性能[J]. 中国腐蚀与防护学报, 2018, 38(2): 191-196.
[14] 郝永胜,Luqman Abdullahi SANI,宋立新,徐国宝,葛铁军,方庆红. 中性和酸性溶液中Q235碳钢表面沉积植酸转化膜的耐蚀行为研究[J]. 中国腐蚀与防护学报, 2016, 36(6): 549-558.
[15] 崔明君,任思明,张广安,刘栓,赵海超,王立平,薛群基. 六方氮化硼掺杂水性环氧树脂耐腐蚀性能的研究[J]. 中国腐蚀与防护学报, 2016, 36(6): 566-572.