Please wait a minute...
中国腐蚀与防护学报  2014, Vol. 34 Issue (6): 523-531    DOI: 10.11092/1005.4537.2013.144
  本期目录 | 过刊浏览 |
组分调制Cu/Ni多层膜的合金化及其合金化镀层的耐蚀特性
骆立立, 费敬银(), 王磊, 林西华, 王少兰
西北工业大学理学院 西安 710129
Alloying of Compositionally Modulated Cu/Ni Multilayer Films and Corrosion Performance of Cu-Ni Alloy Coatings
LUO Lili, FEI Jingyin(), WANG Lei, LIN Xihua, WANG Shaolan
Faculty of Science,Northwestern Polytechnical University, Xi'an 710129, China
全文: PDF(6028 KB)   HTML
摘要: 

采用双槽电沉积方法制备出了Cu/Ni多层膜。探讨了调制波长、热处理条件等对Cu/Ni多层膜合金化行为影响的规律,并借助于SEM和XRD等对Cu/Ni多层膜及其合金化镀层的结构与组成进行了分析表征。结果表明,利用Cu/Ni多层膜合金化方法可以制备出组织均一、成分均匀的Cu-Ni合金镀层,且多层膜调制波长的减小、热处理时间的延长及保温温度的升高均有利于Cu/Ni多层膜的合金化。此外,利用电化学综合测试技术对合金镀层的耐蚀行为进行了评估。结果表明,合金化后的Cu-Ni合金镀层比相应条件下的纯Cu镀层、Ni镀层具有更正的自腐蚀电位、更低的极化电流密度以及更小的腐蚀速率。

关键词 Cu/Ni多层膜合金化电沉积耐蚀性    
Abstract

Cu/Ni multilayered films were prepared by a two step electrodeposition method. The influence of the modulation wavelength and heat treatment condition on the alloying of Cu/Ni multilayered films were studied by means of SEM and XRD. The results showed that the Cu-Ni alloy coatings with well homogeneity in microstructure and composition can be prepared by the alloying of Cu/Ni multilayered films; the alloying process would be favored with the decreasing modulation wavelength as well as the increasing temperature and time of heat-treatment. Besides, the corrosion performance of coatings of copper, nickel and Cu-Ni alloy were comparatively evaluated by immersion test in NaCl solution. The results showed that the Cu-Ni alloy coatings exhibited much positive corrosion potential, smaller polarized current density and lower corrosion rate rather than the pure copper and nickel coatings.

Key wordsCu/Ni multilayer film    the alloying    electrodeposition    corrosion resistance
    
ZTFLH:  TQ153  
作者简介: null

骆立立,男,1989年生,硕士生,研究方向为金属基组分调制多层膜的性能

引用本文:

骆立立, 费敬银, 王磊, 林西华, 王少兰. 组分调制Cu/Ni多层膜的合金化及其合金化镀层的耐蚀特性[J]. 中国腐蚀与防护学报, 2014, 34(6): 523-531.
Lili LUO, Jingyin FEI, Lei WANG, Xihua LIN, Shaolan WANG. Alloying of Compositionally Modulated Cu/Ni Multilayer Films and Corrosion Performance of Cu-Ni Alloy Coatings. Journal of Chinese Society for Corrosion and protection, 2014, 34(6): 523-531.

链接本文:

https://www.jcscp.org/CN/10.11092/1005.4537.2013.144      或      https://www.jcscp.org/CN/Y2014/V34/I6/523

Composition and operating condition Copper bath Nickel bath
CuSO45 H2O, gL-1 90 ---
NiSO46 H2O, gL-1 --- 250
H2SO4 (98%), mgL-1 200 ---
Tri-ammonium citrate, gL-1 --- 50
Ammonia solution (25%~28%), mLL-1 --- 110
T, ℃ 20~30 55~65
Ic, mAcm-2 10 10
Agitation Magnetic stirrer Magnetic stirrer
Anode Copper Platinised titanium mesh
表1  镀铜液和镀镍液的组分及工艺参数
图1  不同调制波长的Cu/Ni多层膜的表面形貌
图2  不同调制波长的Cu/Ni多层膜的截面形貌
Influencing
factor
Level
1 2 3 4
A: λ / μm 1 2 4 ---
B: Temperature / ℃ 300 500 700 900
C: Time / h 1 3 8 ---
表2  影响热处理的因子及因子水平
图3  表头设计
Column Influencing factor and level Slope of
number A: λ / μm B: Time / h C: Temperature / ℃ line
1 1 3 300 5.44
2 1 1 500 4.06
3 1 1 700 2.02
4 1 3 900 0.46
5 1 1 300 7.15
6 1 8 500 2.10
7 1 8 700 1.72
8 1 1 900 1.68
9 2 1 300 8.25
10 2 3 500 4.05
11 2 3 700 2.47
12 2 1 900 2.42
13 4 8 300 10.49
14 4 3 500 8.93
15 4 3 700 2.72
16 4 8 900 0.90
表3  正交实验内容及结果
图4  不同调制波长的Cu/Ni多层膜在700 ℃下热处理3 h后的截面形貌
图5  调制波长对Cu/Ni多层膜合金化的影响趋势
图6  调制波长为2 μm的Cu/Ni多层膜在不同温度下热处理3 h后的断面形貌
图7  保温温度对Cu/Ni多层膜合金化的影响趋势
图8  调制波长为2 μm的Cu/Ni多层膜在700 ℃下经不同时间热处理后的断面形貌
图9  热处理时间对Cu/Ni多层膜合金化的影响趋势
Sources of
variance
Sum of square of deviations Degrees of
freedom
Average
squares
F Statistical
significance
A SA= 8.75 2 4.38 0.86 non-significance
B SB= 1.60 2 0.80 0.16 non-significance
C SC= 85.05 3 28.35 5.56 *
E SE= 35.67 7 5.10 --- ---
表4  方差分析
图10  合金化Cu-Ni多层膜的表面形貌和断面形貌
图11  Cu/Ni多层膜合金化前后的XRD谱
No. Coating
system
pH (3.5%
NaCl)
Ecorr (vs SCE)
mV
1 Cu 3 -204.2
2 Ni 3 -256.2
3 Alloyed Cu-Ni CMMF 3 -190.8
4 Cu 7 -195.1
5 Ni 7 -188.8
6 Alloyed Cu-Ni CMMF 7 -189.8
7 Cu 11 -130.2
8 Ni 11 -249.0
9 Alloyed Cu-Ni CMMF 11 -108.3
表5  不同镀层的自腐蚀电位
图12  Cu镀层在不同pH值3.5%NaCl溶液中的极化曲线
图13  Ni镀层在不同pH值3.5%NaCl溶液中的极化曲线
图14  Cu-Ni合金镀层在不同pH值3.5%NaCl溶液中的的极化曲线
No. Coating
system
pH (3.5%
NaCl)
Corrosion
rate / mma-1
1 Cu 3 0.2416
2 Ni 3 0.3359
3 Alloyed Cu-Ni CMMF 3 0.1782
4 Cu 7 0.0835
5 Ni 7 0.0434
6 Alloyed Cu-Ni CMMF 7 0.0410
7 Cu 11 0.0112
8 Ni 11 0.0165
9 Alloyed Cu-Ni CMMF 11 0.0019
表6  不同镀层的腐蚀速率
[1] Foecke T, Lashmore D S. Mechanical behavior of compositionally modulated alloys: multilayers[J]. Scr. Metall. Mater., 1992, 27: 651-656
[2] Flevaris N K, Logothetidis S. Optical anisotropy in compositionally modulated Cu-Ni films by spectroscopic ellipsometry[J]. Appl. Phys. Lett., 1987, 50(22): 1544-1546
[3] Yu J X, Chen Y Y, Huang Q A. Electrochemical preparation and properties measurement of nanolaminar metallic multilayers[J]. Mater. Prot., 1997, 30(7): 1-3
[3] (喻敬贤, 陈永言, 黄清安. 纳米金属多层膜的电化学制备与性能研究的现状[J]. 材料保护, 1997, 30(7): 1-3)
[4] Huang Q A, Wang Y P, Zhang K, et al. Review of electrodeposition of metallic multilayers[J]. Plat. Finish., 1998, 17(1): 48-51
[4] (黄清安, 王银平, 张葵等. 电沉积法制备金属多层膜的述评[J]. 电镀与涂饰, 1998, 17(1): 48-51)
[5] Stoudt M R, Cammarata R C, Ricker R E. Suppression of fatigue cracking with nanometer-scale multilayered coatings[J]. Scr. Mater., 2000, 43: 491-496
[6] Zhang W, Xue Q J. Tribological properties of nickel-copper multilayer film on beryllium bronze substrate[J]. Thin Solid Films, 1997, 305: 292-296
[7] Baibich M N, Broto J M, Fert A, et al. Giant magnetoresistance of (001) Fe/(001) Cr magnetic supperlatices[J]. Phys. Rev. Lett., 198861(21): 2472-2475
[8] Gyorgy E M, McWhan D B, Dillon J F, et al. Magnetic behavior and structure of compositionally modulated Cu-Ni thin films[J]. Phys. Rev., 1982, 25B: 6739-6747
[9] Gyorgy E M, Dillon J F, Jr McWhan D B, et al. Magnetic properties of compositionally modulated Cu-Ni thin films[J]. Phys. Rev. Lett.1980, 45: 57-60
[10] Testardi L R, Willens R H, Krause J T, et al. Enhanced elastic moduli in Cu-Ni films with compositional modulation[J]. J. Appl. Phys., 1981, 52(1): 510-511
[11] Cammarata R C, Schlesinger T E, Kim C, et al. Nanoindentation study of the mechanical properties of copper-nickel multilayered thin films[J]. Appl. Phys. Lett., 1990, 56(19): 1862-1864
[12] Menezes S, Anderson D P. Wavelength-property correlation in electrodeposited ultrastructured Cu-Ni multilayers[J]. J. Electrochem. Soc., 1990, 137(2): 440-444
[13] Tench D, White J. Enhanced tensile strength for electrodeposited nickel-copper multilayer composites[J]. Metall. Trans., 1984, 15(11)A: 2039-2040
[14] Baral D, Ketterson J B, Hilliard J E. Mechanical properties of composition modulated Cu-Ni foils[J]. J. Appl. Phys., 1985, 57(4): 1076-1083
[15] Gabe D R. Protective layered electrodeposits[J]. Electrochim. Acta, 1994, 39(8/9): 1115-1121
[16] Liao Y, Gabe D R, Wilcox G D. A study of zinc-iron alloy electrodeposition using a rotating cylinder hull cell[J]. Plat. Surf. Finish., 1998, 85(3): 60-66
[17] Watson S A. Zinc-nickel alloy electroplated steel coil and other precoated coil for the use by the automotive industry[J]. Nickel Develop. Inst. Rev., 1988, 13001: 235-258
[18] Kirilova I, Ivanov I, Rashkov St. Anodic behaviour of composition modulated Zn-Co multilayer electrodeposited from single and dual bath[J]. Appl. Electrochem., 1998, 28: 1359-1363
[19] Benballa M, Nils L, Sarret M, et al. Zinc-Nickel codeposition in ammonium baths[J]. Surf. Coat. Technol., 2000, 123(1): 55-61
[20] Fei J Y, Liu J H, Liang G Z, et al. Electrodeposition of composiyionally modulated multilayer Zn-Ni alloy coatings[J]. Corros. Sci. Prot. Technol., 2006, 18(1): 24-27
[20] (费敬银, 刘江宏, 梁国正等. 电沉积法制备组分调解Zn-Ni合金多层镀层[J]. 腐蚀科学与防护技术, 2006, 18(1): 24-27)
[21] Fei J Y, Wilcox G D. Electrodeposition of zinc-nickel compositionally modulated multilayer coatings and their corrosion behaviours[J]. Surf. Coat. Technol., 2006, 200(11): 3533-3539
[22] Xu H B, Fu H T, Zhao G Y. Electrochemical study on dissolution mechanism of copper anode in the active region[J]. J. Chin. Soc. Corros. Prot., 1999, 19(1): 27-32
[22] (徐海波, 付洪田, 赵广宇. 铜阳极活性区溶解机制的电化学研究[J]. 中国腐蚀与防护学报, 1999, 19(1): 27-32)
[23] Dhar H P, White R E, Burnell G, et al. Corrosion of Cu and Cu-Ni alloys in 0.5M NaCl and in synthetic seawater[J]. Corrosion, 198541(6): 317-323
[24] Kear G, Barker B D, Stokes K, et al. Electrochemical corrosion behaviors of 90-10 Cu-Ni alloy in chloride-based electrolytes[J]. J. Appl. Electrochem., 2004, 34: 659-669
[1] 黄鹏, 高荣杰, 刘文斌, 尹续保. 盐溶液刻蚀-氟化处理制备X65管线钢镀镍超双疏表面及其耐蚀性研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 96-100.
[2] 包任, 周根树, 李宏伟. 恒电位脉冲电沉积高锡青铜耐蚀镀层工艺研究[J]. 中国腐蚀与防护学报, 2020, 40(6): 585-591.
[3] 刘海霞, 黄峰, 袁玮, 胡骞, 刘静. 690 MPa级高强贝氏体钢在模拟乡村大气中的腐蚀行为[J]. 中国腐蚀与防护学报, 2020, 40(5): 416-424.
[4] 李聪玮, 杜双明, 曾志琳, 刘二勇, 王飞虎, 马付良. 电流密度对Ni-Co-B镀层微观结构及磨蚀性能的影响[J]. 中国腐蚀与防护学报, 2020, 40(5): 439-447.
[5] 曹京宜, 方志刚, 陈晋辉, 陈志雄, 殷文昌, 杨延格, 张伟. 5083铝合金表面单致密微弧氧化膜的制备及其性能研究[J]. 中国腐蚀与防护学报, 2020, 40(3): 251-258.
[6] 王英君, 刘洪雷, 王国军, 董凯辉, 宋影伟, 倪丁瑞. 新型高强稀土Al-Zn-Mg-Cu-Sc铝合金的阳极氧化及其抗腐蚀性能研究[J]. 中国腐蚀与防护学报, 2020, 40(2): 131-138.
[7] 王乐,易丹青,刘会群,蒋龙,冯春. Ru对Ti-6Al-4V合金腐蚀行为的影响及机理研究[J]. 中国腐蚀与防护学报, 2020, 40(1): 25-30.
[8] 武栋才,韩培德. 中温时效处理对SAF2304双相不锈钢耐蚀性的影响[J]. 中国腐蚀与防护学报, 2020, 40(1): 51-56.
[9] 杨寅初,傅秀清,刘琳,马文科,沈莫奇. 喷射电沉积Ni-P-BN(h)-Al2O3复合镀层的耐腐蚀性能研究[J]. 中国腐蚀与防护学报, 2020, 40(1): 57-62.
[10] 孙晓光,韩晓辉,张星爽,张志毅,李刚卿,董超芳. 超低碳奥氏体不锈钢焊接接头耐腐蚀性及环保型化学钝化工艺研究[J]. 中国腐蚀与防护学报, 2019, 39(4): 345-352.
[11] 冯旭,费敬银,李倍,张嫚,郭琪琪. 组分调制Ni/Cr多层膜合金化制备Ni-Cr合金覆盖层的耐腐蚀特性[J]. 中国腐蚀与防护学报, 2019, 39(2): 167-175.
[12] 程多云,赵晋斌,刘波,姜城,付小倩,程学群. 高镍钢和传统耐候钢在马尔代夫严酷海洋大气环境中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2019, 39(1): 29-35.
[13] 蓝秀玲,刘光明,周街胜,刘志雷,彭叔森,李茂东. 有机硅/SiO2杂化溶胶改性丙烯酸树脂及性能研究[J]. 中国腐蚀与防护学报, 2018, 38(6): 601-606.
[14] 蒋斌, 曾利兰, 梁涛, 潘浩波, 乔岩欣, 张竞, 赵颖. 316L不锈钢表面超疏水微纳镍镀层定向电沉积工艺优化研究[J]. 中国腐蚀与防护学报, 2018, 38(5): 438-446.
[15] 王志虎, 张菊梅, 白力静, 张国君. AZ91镁合金表面微弧氧化与化学镀铜复合处理层的微观组织与性能[J]. 中国腐蚀与防护学报, 2018, 38(4): 391-396.