Please wait a minute...
中国腐蚀与防护学报  2020, Vol. 40 Issue (6): 485-494    DOI: 10.11902/1005.4537.2019.182
  综合评述 本期目录 | 过刊浏览 |
高放射性核废料钛储罐深地质环境中氢吸收及氢脆研究进展
张琦超1,2,3,4, 黄彦良1,2,4(), 许勇1,2,3,4, 杨丹1,2,3,4, 路东柱1,2,4
1.中国科学院海洋研究所 中国科学院海洋环境腐蚀与生物污损重点实验室 青岛 266071
2.青岛海洋科学与技术试点国家实验室 海洋腐蚀与防护开放工作室 青岛 266237
3.中国科学院大学 北京 100049
4.中国科学院海洋大科学研究中心 青岛 266071
Research Progress on Hydrogen Absorption and Embrittlement of Titanium and Its Alloy for High-level Nuclear Waste Container in Deep Geological Disposal Environment
ZHANG Qichao1,2,3,4, HUANG Yanliang1,2,4(), XU Yong1,2,3,4, YANG Dan1,2,3,4, LU Dongzhu1,2,4
1. CAS Key Laboratory of Marine Environment of Corrosion and Bio-fouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
2. Open Studio for Marine Corrosion and Protection, Pilot National Laboratory for Marine Science and Technology(Qingdao), Qingdao 266237, China
3. University of Chinese Academy of Sciences, Beijing 100049, China
4. Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
全文: PDF(1550 KB)   HTML
摘要: 

介绍了Ti及其合金发生氢脆可能的深地质环境因素,分别论述了H在Ti中扩散,Ti发生氢脆的实质及机理,总结了多种钛合金的临界氢浓度,分析了深地质环境下Ti储罐发生氢脆的可能性。最后对研究Ti储罐在深地质环境中氢脆问题进行了展望。

关键词 高放核废料Ti氢吸收氢脆TiHx    
Abstract

As the first barrier for deep geological disposal of high-level nuclear waste (HLNW), HLNW containers are of great significance. Because of the superior corrosion resistance, Ti is one of the candidates. Once the oxygen in the repository is depleted, the cathodic process supporting Ti corrosion is mainly H+ reduction. Therefore, Ti and its alloys are likely to suffer from hydrogen embrittlement (HE), which in turn greatly shortens their service life. The environmental factors, which may induce HE for Ti and its alloy during deep geological disposal, were introduced. The hydrogen diffusion and the relevant mechanism of HE for Ti and Ti-alloys are discussed in the article. Furthermore, the relevant information of critical hydrogen concentrations of various Ti-alloys was also summerized, which is a useful index for predicting whether HE may happen or not. The possibility of hydrogen embrittlement for Ti container in deep geological environment was analyzed. Finally, the future research trend on HE of Ti container in deep geological disposal environment is expected briefly.

Key wordshigh-level nuclear waste    Ti    hydrogen absorption    hydrogen embrittlement    TiHx
收稿日期: 2019-10-18     
ZTFLH:  TG178  
基金资助:国家自然科学基金(51471160)
通讯作者: 黄彦良     E-mail: hyl@qdio.ac.cn
Corresponding author: HUANG Yanliang     E-mail: hyl@qdio.ac.cn
作者简介: 张琦超,男,1992年生,博士生

引用本文:

张琦超, 黄彦良, 许勇, 杨丹, 路东柱. 高放射性核废料钛储罐深地质环境中氢吸收及氢脆研究进展[J]. 中国腐蚀与防护学报, 2020, 40(6): 485-494.
Qichao ZHANG, Yanliang HUANG, Yong XU, Dan YANG, Dongzhu LU. Research Progress on Hydrogen Absorption and Embrittlement of Titanium and Its Alloy for High-level Nuclear Waste Container in Deep Geological Disposal Environment. Journal of Chinese Society for Corrosion and protection, 2020, 40(6): 485-494.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2019.182      或      https://www.jcscp.org/CN/Y2020/V40/I6/485

图1  模拟我国核废料储罐表面温度的演变[26]
图2  深地质环境中氧浓度的模拟演化
图3  钛-氢相图[52]
[1] Lukens W W, Saslow S A. Aqueous synthesis of technetium-doped titanium dioxide by direct oxidation of titanium powder, a precursor for ceramic nuclear waste forms [J]. Chem. Mat., 2017, 29: 10369
doi: 10.1021/acs.chemmater.7b03567
[2] Wang J, Fan X H, Xu G Q, et al. Ten Years Progress of Geological Disposal of High Level Radioactive Waste in China [M]. Beijing: Atomic Energy Press, 2004
[2] (王驹, 范显华, 徐国庆等. 中国高放废物地质处置十年进展 [M]. 北京: 原子能出版社, 2004)
[3] Arup O. Ocean Disposal of Radioactive Waste by Penetrator Emplacement [M]. London: Graham & Trotman Let, 1985
[4] Pan W K. Introduction of nuclear waste treatment method [J]. Geol. Sci. Technol. Inform., 1989, (1): 132
[4] (潘文坤. 核废料处理方法简介 [J]. 地质科技情报, 1989, (1): 132)
[5] Shen Z Y. Method to treatment and disposal HLW [J]. Radiat. Prot. Bull., 2002, 22(1): 37
[5] (沈珍瑶. 高放废物的处理处置方法 [J]. 辐射防护通讯, 2002, 22(1): 37)
[6] Bradley D J. Behind the Nuclear Curtain: Radioactive Waste Management in the Former Soviet Union [M]. Columbus, OH: Battelle Press, 1997
[7] Milnes A G. Geology and Radwaste [M]. London: Academic Press, 1985
[8] Gao Z L. Send nuclear waste into space [J]. World Invent., 1995, (11): 12
[8] (高正岚. 把核废料送到太空去 [J]. 世界发明, 1995, (11): 12)
[9] Duquette D J, Latanision R M, Di Bella C A W, et al. Corrosion issues related to disposal of high-level nuclear waste in the yucca mountain repository-peer reviewers’ perspective [J]. Corrosion, 2009, 65: 272
[10] SKB. Sea disposal of radioactive wastes (Technical Report TR-01-30) [R]. Vienna: IAEA, 2001
[11] Wang J, Xu G Q, Zheng H L, et al. Geological disposal of high level radioactive waste in China: Progress during 1985~2004 [J]. World Nucl. Geosci., 2005, 22(1): 5
[11] (王驹, 徐国庆, 郑华铃等. 中国高放废物地质处置研究进展: 1985~2004 [J]. 世界核地质科学, 2005, 22(1): 5)
[12] Tsujikawa S, Kojima Y. Repassivation method to predict long term integrity of low alloy titanium for nuclear waste package [J]. MRS Proc., 1990, 212: 261
[13] He X H, Noël J J, Shoesmith D W. Temperature dependence of crevice corrosion initiation on titanium grade-2 [J]. . Electrochem. Soc., 2002, 149: B440
[14] Rebak R B. Corrosion testing of nickel and titanium alloys for nuclear waste disposition [J]. Corrosion, 2009, 65: 252
[15] Gordon G M, Mon K G, Hua F, et al. Potential SCC initiation and propagation of titanium alloys under U.S. nuclear waste repository environmental conditions [A]. 17th International Corrosion Congress [C].Las Vegas, Nevada, 2008
[16] Hua F, Mon K, De G, et al. The potential for the SCC of titanium alloys under repository-relevant environments for U.S. nuclear waste [J]. JOM, 2008, 60(1): 66
[17] Hua F, De G C, Gordon G M, et al. Hydrogen induced cracking of titanium alloys in environments anticipated in yucca mountain nuclear waste repository [A]. Corrosion 2005 [C]. Houston, NACE International, 2005
[18] Hua F, Mon K, Pasupathi P, et al. A review of corrosion of titanium grade 7 and other titanium alloys in nuclear waste repository environments [J]. Corrosion, 2005, 61: 987
[19] Pang J J, Blackwood D J. Corrosion of titanium alloys in high temperature near anaerobic seawater [J]. Corros. Sci., 2016, 105: 17
[20] Qin Z, Zeng Y, Shoesmith D W. Modeling hydrogen permeation through a thin titanium oxide film and palladium [J]. Thin Solid Films, 2013, 534: 673
doi: 10.1016/j.tsf.2013.02.030
[21] Yen S K. Retardation effects of thermally grown oxide films on the hydrogen embrittlement of commercial pure titanium [J]. Corros. Sci., 1999, 41: 2031
[22] Blackwood D J, Greef R, Peter L M. An ellipsometric study of the growth and open-circuit dissolution of the anodic oxide film on titanium [J]. Electrochim. Acta, 1989, 34: 875
[23] Blackwood D J, Peter L M, Williams D E. Stability and open circuit breakdown of the passive oxide film on titanium [J]. Electrochim. Acta, 1988, 33: 1143
[24] Dwivedi S K, Vishwakarma M. Hydrogen embrittlement in different materials: A review [J]. Int. J. Hydrog. Energy, 2018, 43: 21603
[25] Seetharam S C, Cleall P J, Thomas H R. Modelling some aspects of ion migration in a compacted bentonitic clay [J]. Eng. Geol., 2006, 85: 221
[26] Huang Y L, Zheng M, Zhang Q C, et al. Long term temperature and humidity evolution forecast in near field of nuclear waste container [J]. Equip. Environ. Eng., 2018, 15(10): 109
[26] (黄彦良, 郑珉, 张琦超等. 核废料储罐近域环境中温湿度长期演变预测 [J]. 装备环境工程, 2018, 15(10): 109)
[27] Guo Y H, Wang J, Xiao F, et al. Groundwater formation in Beishan (Gansu) preselected area of high-level radioactive waste disposal repository [J]. Geol. J. China Univ., 2010, 16: 13
[27] (郭永海, 王驹, 肖丰等. 高放废物处置库甘肃北山预选区地下水的形成 [J]. 高校地质学报, 2010, 16: 13)
[28] Zheng M, Zhang Q C, Huang Y L, et al. Determination of representative ground-water for corrosion assessment of candidate materials used in Beishan area preselected for high-level radioactive waste disposal repository [J]. J. Chin. Soc. Corros. Prot., 2016, 36: 185
[28] (郑珉, 张琦超, 黄彦良等. 中国高放废物处置库甘肃北山预选区腐蚀研究用代表性地下水成分的确定 [J]. 中国腐蚀与防护学报, 2016, 36: 185)
doi: 10.11902/1005.4537.2015.055
[29] Yang C B, Samper J, Molinero J, et al. Modelling geochemical and microbial consumption of dissolved oxygen after backfilling a high level radiactive waste repository [J]. J. Contam. Hydrol., 2007, 93: 130
pmid: 17328991
[30] Shen Z Y, Li G D, Li S K. Coupled calculation of dose rate and temperature in the near field of a high-level radioactive waste disposal repository [J]. Radiat. Prot., 2000, 20: 153
[30] (沈珍瑶, 李国鼎, 李书绅. 高放废物处置库近场剂量场与温度场的耦合计算 [J]. 辐射防护, 2000, 20: 153)
[31] Liang D, Liu W, Yang Z T, et al. Preliminary study on gamma radiation effects on modified sodium bentonite [J]. Acta Mineral. Sin., 2015, 35: 103
[31] (梁栋, 刘伟, 杨仲田等. γ辐照对改性钠基膨润土影响的初步研究 [J]. 矿物学报, 2015, 35: 103)
[32] Xia Y H, Liu S L. A computer code for calculating radioactivity in high-level waste solidified products and dose rate inside and outside the solidified products [J]. Radiat. Prot., 1991, 11: 23
[32] (夏益华, 刘森林. 计算高放废物固化体内放射性活度及内、外剂量率的计算机程序 [J]. 辐射防护, 1991, 11: 23)
[33] Schutz R W. Understanding and preventing crevice corrosion of titanium alloys II [J]. Mater. Perform., 1992, 31(11): 54
[34] Wasilewski R J, Kehl G L. Diffusion of Hydrogen in Ti [J]. J. Jpn. I. Met., 1993, 50: 267
[35] Papazoglou T P, Hepworth M T. Diffusion of hydrogen in α-titanium [J]. Trans. Met. Soc. AIME, 1968, 242: 682
[36] Malyshev L G, Lebedev S A, Ryabov R A, et al. Hydrogen diffusion in titanium at room temperature [J]. Sov. Phys. J., 1982, 25: 232
[37] Wipf H, Kappesser B, Werner R. Hydrogen diffusion in titanium and zirconium hydrides [J]. J. Alloy. Compd., 2000, 310: 190
[38] Phillips I I, Poole P, Shreir L L. Hydride formation during cathodic polarization of Ti—II. Effect of temperature and pH of solution on hydride growth [J]. Corros. Sci., 1974, 14: 533
[39] Zhang Q C, Huang Y L, Sand W, et al. Effects of deep geological environments for nuclear waste disposal on the hydrogen entry into titanium [J]. Int. J. Hydrog. Energy, 2019, 44: 12200
[40] Bustard L D, Cotts R M, Seymour E F W. Determination of the hydrogen diffusion mechanism in γ-titanium hydride using nuclear magnetic resonance [J]. Phys. Rev., 1980, 22B: 12
[41] Stalinski B, Coogan C K, Gutowsky H S. Proton magnetic resonance studies of structure, diffusion, and resonance shifts in titanium hydride [J]. J. Chem. Phys., 1961, 34: 1191
[42] Christ H J, Decker M, Zeitler S. Hydrogen diffusion coefficients in the titanium alloys IMI 834, Ti 10-2-3, Ti 21 S, and alloy C [J]. Metall. Mater. Trans., 2000, 31A: 1507
[43] Miyoshi T, Naito S, Yamamoto M, et al. Diffusion of hydrogen in titanium, Ti88Al12 and Ti3Al [J]. J. Chem. Soc., Faraday Trans., 1996, 92: 483
[44] Johnson D L, Nelson H G. Determination of hydrogen pęrmeation parameters in alpha titanium using the mass spectrometer [J]. Metall. Trans., 1973, 4: 569
[45] Wang Z F, Briant C L, Kumar K S. Hydrogen embrittlement of grade 2 and grade 3 titanium in 6% sodium chloride solution [J]. Corrosion, 1998, 54: 553
[46] Shih D S, Robertson I M, Birnbaum H K. Hydrogen embrittlement of α titanium: In situ TEM studies [J]. Acta Metall., 1988, 36: 111
[47] Gregory J K, Brokmeier H G. The relationship between crystallographic texture and salt water cracking susceptibility in Ti-6Al-4V [J]. Mater. Sci. Eng., 1995, A203: 365
[48] Simbi D J, Scully J C. Fracture morphologies exhibited by commercially pure titanium when strained to failure while in contact with chloride-containing environments [J]. Corros. Sci., 1993, 35: 489
doi: 10.1016/0010-938X(93)90181-F
[49] Yan L, Ramamurthy S, Noël J J, et al. Hydrogen absorption into alpha titanium in acidic solutions [J]. Electrochim. Acta, 2006, 52: 1169
doi: 10.1016/j.electacta.2006.07.017
[50] Millenbach P, Givon M. The electrochemical formation of titanium hydride [J]. J. Less Common Met., 1982, 87: 179
[51] Phillips I I, Poole P, Shreir L L. Hydride formation during cathodicpolarization of Ti—I. Effect of current density on kinetics of growth and composition of hydride [J]. Corros. Sci. 1972, 12: 855
doi: 10.1016/S0010-938X(72)80014-3
[52] Cui C J, Peng Q. Study on hydrogen permeation process in titanium and Ti alloys [J]. Rare Met. Mater. Eng., 2003, 32: 1011
[52] (崔昌军, 彭乔. 钛及钛合金的氢渗过程研究 [J]. 稀有金属材料与工程, 2003, 32: 1011)
[53] Numakura H, Koiwa M. Hydride precipitation in titanium [J]. Acta Metall., 1984, 32: 1799
doi: 10.1016/0001-6160(84)90236-0
[54] Panin A, Kazachenok M, Pochivalov Y, et al. Hydrogen treatment of titanium specimens in various structural states [A]. 7th Korea-Russia International Symposium on Science and Technology [C]. Ulsan, South Korea, 2003: 97
[55] Huang G, Cao X H, Long X G. Physical and chemical properties of titanium-hydrogen system [J]. Mater. Rev., 2006, 20(10): 128
[55] (黄刚, 曹小华, 龙兴贵. 钛-氢体系的物理化学性质 [J]. 材料导报, 2006, 20(10): 128)
[56] Aronsson B O, Hjörvarsson B, Frauchiger L, et al. Hydrogen desorption from sand-blasted and acid-etched titanium surfaces after glow-discharge treatment [J]. J. Biomed. Mater. Res., 2001, 54: 20
doi: 10.1002/1097-4636(200101)54:1<20::aid-jbm3>3.0.co;2-z pmid: 11077399
[57] Setoyama D, Matsunaga J, Muta H, et al. Mechanical properties of titanium hydride [J]. J. Alloy. Compd., 2004, 381: 215
doi: 10.1016/j.jallcom.2004.04.073
[58] Xu J J, Cheung H Y, Shi S Q. Mechanical properties of titanium hydride [J]. J. Alloy. Compd., 2007, 436: 82
doi: 10.1016/j.jallcom.2006.06.107
[59] Setoyama D, Matsunaga J, Ito M, et al. Thermal properties of titanium hydrides [J]. J. Nucl. Mater., 2005, 344: 298
doi: 10.1016/j.jnucmat.2005.04.059
[60] Ito M, Setoyama D, Matsunaga J, et al. Electrical and thermal properties of titanium hydrides [J]. J. Alloy. Compd., 2006, 420: 25
doi: 10.1016/j.jallcom.2005.10.032
[61] Wang Y Q, Zhang N, Ren X P, et al. Behavior and rule of titanium hydride dynamic decomposition [J]. Mater. Sci. Eng. Powder Metall., 2011, 16: 795
[61] (王耀奇, 张宁, 任学平等. 氢化钛的动态分解行为与规律 [J]. 粉末冶金材料科学与工程, 2011, 16: 795)
[62] Briant C L, Wang Z F, Chollocoop N. Hydrogen embrittlement of commercial purity titanium [J]. Corros. Sci., 2002, 44: 1875
doi: 10.1016/S0010-938X(01)00159-7
[63] Nishimura R, Shirono J, Jonokuchi A. Hydrogen-induced cracking of pure titanium in sulphuric acid and hydrochloric acid solutions using constant load method [J]. Corros. Sci., 2008, 50: 2691
doi: 10.1016/j.corsci.2008.06.037
[64] Könönen M H O, Lavonius E T, Kivilahti J K. SEM observations on stress corrosion cracking of commercially pure titanium in a topical fluoride solution [J]. Dent. Mater., 1995, 11: 269
doi: 10.1016/0109-5641(95)80061-1 pmid: 8621050
[65] Williams D P, Nelson H G. Gaseous hydrogen-induced cracking of Ti-5Al-2.5 Sn [J]. Metall. Trans., 1972, 3: 2107
doi: 10.1007/BF02643219
[66] Jr M R L, Swanson R E. Material defects, gas purity and hydrogen embrittlement [J]. Int. J. Hydrogen Energ., 1985, 10: 551
doi: 10.1016/0360-3199(85)90087-4
[67] Young G A, Scully J R. Effects of hydrogen on the mechanical properties of a Ti-Mo-Nb-Al alloy [J]. Scr. Metall. Mater., 1993, 28: 507
doi: 10.1016/0956-716X(93)90091-6
[68] Tal-Gutelmacher E, Eliezer D. The hydrogen embrittlement of titanium-based alloys [J]. JOM, 2005, 57(9): 46
[69] Yokoyama K, Ogawa T, Asaoka K, et al. Degradation of tensile strength of Ni-Ti superelastic alloy due to hydrogen absorption in methanol solution containing hydrochloric acid [J]. Mater. Sci. Eng., 2003, A360: 153
[70] Yokoyama K, Kaneko K, Ogawa T, et al. Hydrogen embrittlement of work-hardened Ni-Ti alloy in fluoride solutions [J]. Biomaterials, 2005, 26: 101
doi: 10.1016/j.biomaterials.2004.02.009 pmid: 15193885
[71] Yokoyama K, Ogawa T, Asaoka K, et al. Evaluation of hydrogen absorption properties of Ti-0.2 mass% Pd alloy in fluoride solutions [J]. J. Alloy. Compd., 2005, 400: 227
doi: 10.1016/j.jallcom.2005.03.048
[72] Yokoyama K, Ogawa T, Asaoka K, et al. Fracture of sustained tensile-loaded Ti-0.2% Pd alloy in acid and neutral fluoride solutions [J]. Mater. Sci. Eng., 2006, A419: 122
[73] Dafft E G, Bohnenkamp K, Engell H J. Investigations of the hydrogen evolution kinetics and hydrogen absorption by iron electrodes during cathodic polarization [J]. Corros. Sci., 1979, 19: 591
doi: 10.1016/S0010-938X(79)80061-X
[74] Shoesmith D W, Noel J J, Hardie D, et al. Hydrogen absorption and the lifetime performance of titanium nuclear waste containers [J]. Corros. Rev., 2000, 18: 331
[75] Hua F, Pasupathi P, Mon K, et al. Modeling the hydrogen-induced cracking of titanium alloys in nuclear waste repository environments [J]. JOM, 2005, 57(1): 20
[76] Zhu R Z. Metal Corrosion [M]. Beijing: Metallurgical Industry Press, 1989
[76] (朱日彰. 金属腐蚀学 [M]. 北京: 冶金工业出版社, 1989)
[77] Hardie D, Ouyang S. Effect of hydrogen and strain rate upon the ductility of mill-annealed Ti6Al4V [J]. Corros. Sci., 1999, 41: 155
doi: 10.1016/S0010-938X(98)00109-7
[78] Clarke C F, Hardie D, Ikeda B M. Hydrogen-induced cracking of commercial purity titanium [J]. Corros. Sci., 1997, 39: 1545
doi: 10.1016/S0010-938X(97)00055-3
[79] Sorensen N R, RuppenJ A. The environmental cracking of Ticode-12® in aqueous chloride environments [J]. Corrosion, 1985, 41: 560
doi: 10.5006/1.3582984
[80] Ikeda B M, Quinn M J. Hydrogen assisted cracking of grade-16 titanium: A preliminary examination of behaviour at room temperature [R]. Toronto, Ontario, Canada: Ontario Hydro, 1998
[81] Wei X, Dong J H, Ke W. Research progress on corrosion of titanium container in geological disposal environment of high radioactive nuclear waste [J]. Corros. Sci. Prot. Technol., 2013, 25: 160
[81] (魏欣, 董俊华, 柯伟. 高放射性核废料地质处置环境中钛处置罐腐蚀研究的进展 [J]. 腐蚀科学与防护技术, 2013, 25: 160)
[82] Okada T. Factors influencing the cathodic charging efficiency of hydrogen by modified titanium electrodes [J]. Electrochim. Acta, 1983, 28: 1113
doi: 10.1016/0013-4686(83)80015-2
[83] Zhang Q C, Zheng M, Huang Y L, et al. Corrosion behaviour of carbon steel, titanium and titanium alloy in simulated underground water in Beishan area preselected for nuclear waste repository in China [J]. Corros. Eng. Sci. Technol., 2017, 52: 425
doi: 10.1080/1478422X.2017.1319682
[84] Zhang Q C, Zheng M, Huang Y L, et al. Long term corrosion estimation of carbon steel, titanium and its alloy in backfill material of compacted bentonite for nuclear waste repository [J]. Sci. Rep., 2019, 9: 3195
doi: 10.1038/s41598-019-39751-9 pmid: 30824747
[1] 韩月桐, 张鹏超, 史杰夫, 李婷, 孙俊才. 质子交换膜燃料电池中TA1双极板的表面改性研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 125-130.
[2] 史昆玉, 吴伟进, 张毅, 万毅, 于传浩. TC4表面沉积Nb涂层在模拟体液环境下的电化学性能研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 71-79.
[3] 赵东杨, 周宇, 王冬颖, 那铎. 磷化处理对核主泵螺栓断裂行为的影响[J]. 中国腐蚀与防护学报, 2020, 40(6): 539-544.
[4] 周宇, 张海兵, 杜敏, 马力. 模拟深海环境中阴极极化对1000 MPa级高强钢氢脆敏感性的影响[J]. 中国腐蚀与防护学报, 2020, 40(5): 409-415.
[5] 解璇, 刘莉, 王福会. TiO2的制备及表面修饰工艺对其光电化学阴极保护性能的影响[J]. 中国腐蚀与防护学报, 2020, 40(2): 123-130.
[6] 白苗苗, 白子恒, 蒋立, 张东玖, 姚琼, 魏丹, 董超芳, 肖葵. H62黄铜/TC4钛合金焊接件腐蚀行为研究[J]. 中国腐蚀与防护学报, 2020, 40(2): 159-166.
[7] 王乐,易丹青,刘会群,蒋龙,冯春. Ru对Ti-6Al-4V合金腐蚀行为的影响及机理研究[J]. 中国腐蚀与防护学报, 2020, 40(1): 25-30.
[8] 赵晋斌,赵起越,陈林恒,黄运华,程学群,李晓刚. 不同表面处理方式对300M钢在青岛海洋大气环境下腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2019, 39(6): 504-510.
[9] 张瑞,李雨,关蕾,王冠,王福雨. 热处理对激光选区熔化Ti6Al4V合金电化学腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2019, 39(6): 588-594.
[10] 艾鹏,刘礼祥,李晓罡,姜文涛. TiAlSiN涂层对γ-TiAl基合金抗高温氧化性能的影响[J]. 中国腐蚀与防护学报, 2019, 39(4): 306-312.
[11] 史昆玉,张进中,张毅,万毅. Nb2N涂层制备及其耐腐蚀性能研究[J]. 中国腐蚀与防护学报, 2019, 39(4): 313-318.
[12] 任建平,宋仁国. 双级时效对7050铝合金力学性能及氢脆敏感性的影响[J]. 中国腐蚀与防护学报, 2019, 39(4): 359-366.
[13] 严少坤,郑大江,韦江,宋光铃,周廉. 钝性纯Ti在人工海水中的电化学活化行为研究[J]. 中国腐蚀与防护学报, 2019, 39(2): 123-129.
[14] 童海生,孙彦辉,宿彦京,庞晓露,高克玮. 海工结构用2205双相不锈钢氢致开裂行为研究[J]. 中国腐蚀与防护学报, 2019, 39(2): 130-137.
[15] 廖彤,马峥,李蕾蕾,马秀敏,王秀通,侯保荣. Fe2O3/TiO2纳米复合材料对304不锈钢的光生阴极保护性能[J]. 中国腐蚀与防护学报, 2019, 39(1): 36-42.