|
|
TiO2的制备及表面修饰工艺对其光电化学阴极保护性能的影响 |
解璇1,2, 刘莉1( ), 王福会1 |
1 沈阳材料科学国家研究中心 东北大学联合研究部 沈阳 110819 2 中国科学院金属研究所 沈阳 110016 |
|
Effect of Preparation and Surface Modification of TiO2 on Its Photoelectrochemical Cathodic Protection Performance |
XIE Xuan1,2, LIU Li1( ), WANG Fuhui1 |
1 Shenyang National Laboratory for Materials Science, Northeastern University, Shenyang 110819, China 2 Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China |
[1] |
Fujishima A, Honda K. Electrochemical photolysis of water at a semiconductor electrode [J]. Nature, 1972, 238(5358): 37
|
[2] |
Li S N, Fu J J. Improvement in corrosion protection properties of TiO2 coatings by chromium doping [J]. Corros. Sci., 2013, 68: 101
|
[3] |
Chen Y Q, Zhao S, Chen M Y, et al. Sandwiched polydopamine (PDA) layer for titanium dioxide (TiO2) coating on magnesium to enhance corrosion protection [J]. Corros. Sci., 2015, 96: 67
|
[4] |
Lei C X, Feng Z D, Zhou H. Visible-light-driven photogenerated cathodic protection of stainless steel by liquid-phase-deposited TiO2 films [J]. Electrochim. Acta, 2012, 68: 134
|
[5] |
Akpan U G, Hameed B H. The advancements in sol-gel method of doped-TiO2 photocatalysts [J]. Appl. Catal., 2010, 375A: 1
|
[6] |
Kumar S G, Devi L G. Review on modified TiO2 photocatalysis under UV/visible light: Selected results and related mechanisms on interfacial charge carrier transfer dynamics [J]. J. Phys. Chem., 2011, 115A: 13211
|
[7] |
Yuan J N, Tsujikawa S. Photo-effects of sol-gel derived TiO2 coating on carbon steel in alkaline solution [J]. Zairyo-to-Kankyo, 1995, 44: 534
|
[8] |
Pablos C, Marugán J, Van Grieken R, et al. Correlation between photoelectrochemical behaviour and photoelectrocatalytic activity and scaling-up of P25-TiO2 electrodes [J]. Electrochim. Acta, 2014, 130: 261
|
[9] |
Liu G, Yang H G, Pan J, et al. Titanium dioxide crystals with tailored facets [J]. Chem. Rev., 2014, 114: 9559
|
[10] |
Pan J, Liu G, Lu G Q, et al. On the true photoreactivity order of {001}, {010}, and {101} facets of anatase TiO2 crystals [J]. Angew. Chem. Int. Ed., 2011, 50: 2133
|
[11] |
Xie Y P, Yu Z B, Liu G, et al. CdS-mesoporous ZnS core-shell particles for efficient and stable photocatalytic hydrogen evolution under visible light [J]. Energy Environ. Sci., 2014, 7: 1895
|
[12] |
Liu G, Wang L Z, Yang H G, et al. Titania-based photocatalysts-crystal growth, doping and heterostructuring [J]. J. Mater. Chem., 2010, 20: 831
|
[13] |
Niu P, Yin L C, Yang Y Q, et al. Increasing the visible light absorption of graphitic carbon nitride (melon) photocatalysts by homogeneous self-modification with nitrogen vacancies [J]. Adv. Mater., 2014, 26: 8046
|
[14] |
Zhang G G, Zang S H, Wang X C. Layered Co(OH)2 deposited polymeric carbon nitrides for photocatalytic water oxidation [J]. ACS Catal., 2015, 5: 941
|
[15] |
Lee R L, Tran P D, Pramana S S, et al. Assembling graphitic-carbon-nitride with cobalt-oxide-phosphate to construct an efficient hybrid photocatalyst for water splitting application [J]. Catal. Sci. Technol., 2013, 3: 1694
|
[16] |
Yang J H, Wang D G, Han H X, et al. Roles of cocatalysts in photocatalysis and photoelectrocatalysis [J]. Acc. Chem. Res., 2013, 46: 1900
|
[17] |
Rosseler O, Shankar M V, Du M K L, et al. Solar light photocatalytic hydrogen production from water over Pt and Au/TiO2 (anatase/rutile) photocatalysts: Influence of noble metal and porogen promotion [J]. J. Catal., 2010, 269: 179
|
[18] |
Zhu M S, Chen P L, Liu M H. High-performance visible-light-driven plasmonic photocatalysts Ag/AgCl with controlled size and shape using graphene oxide as capping agent and catalyst promoter [J]. Langmuir, 2013, 29: 9259
|
[19] |
Jacobs G, Graham U, Chenu E, et al. Low-temperature water-gas shift: Impact of Pt promoter loading on the partial reduction of ceria and consequences for catalyst design [J]. J. Catal., 2005, 229: 499
|
[20] |
Liu M Y, You W S, Lei Z B, et al. Water reduction and oxidation on Pt-Ru/Y2Ta2O5N2 catalyst under visible light irradiation [J]. Chem. Commun., 2004, (19): 2192
|
[21] |
Wang L, Dionigi F, Nguyen N T, et al. Tantalum nitride nanorod arrays: Introducing Ni-Fe layered double hydroxides as a cocatalyst strongly stabilizing photoanodes in water splitting [J]. Chem. Mater., 2015, 27: 2360
|
[22] |
Hutchings G S, Zhang Y, Li J, et al. In situ formation of cobalt oxide nanocubanes as efficient oxygen evolution catalysts [J]. J. Am. Chem. Soc., 2015, 137: 4223
|
[23] |
Irshad A, Munichandraiah N. An oxygen evolution Co-Ac catalyst-the synergistic effect of phosphate ions [J]. Phys. Chem. Chem. Phys., 2014, 16: 5412
|
[24] |
Qorbani M, Naseri N, Moshfegh A Z. Hierarchical Co3O4/Co(OH)2 nanoflakes as a supercapacitor electrode: Experimental and semi-empirical model [J]. ACS Appl. Mater. Interfaces, 2015, 7: 11172
|
[25] |
Grünert W, Brückner A, Hofmeister H, et al. Structural properties of Ag/TiO2 catalysts for acrolein hydrogenation [J]. J. Phys. Chem., 2004, 108B: 5709
|
[26] |
Lin C H, Chao J H, Liu C H, et al. Effect of calcination temperature on the structure of a Pt/TiO2 (B) nanofiber and its photocatalytic activity in generating H2 [J]. Langmuir, 2008, 24: 9907
|
[27] |
Wei N, Liu Y, Zhang T T, et al. Hydrogenated TiO2 nanotube arrays with enhanced photoelectrochemical property for photocathodic protection under visible light [J]. Mater. Lett., 2016, 185: 81
|
[28] |
Yang J H, Yan H J, Wang X L, et al. Roles of cocatalysts in Pt-PdS/CdS with exceptionally high quantum efficiency for photocatalytic hydrogen production [J]. J. Catal., 2012, 290: 151
|
[29] |
Lin Z Q, Lai Y K, Hu R G, et al. A highly efficient ZnS/CdS@TiO2 photoelectrode for photogenerated cathodic protection of metals [J]. Electrochim. Acta, 2010, 55: 8717
|
[30] |
Hu J, Zhu Y F, Liu Q, et al. SnO2 nanoparticle films prepared by pulse current deposition for photocathodic protection of stainless steel [J]. J. Electrochem. Soc., 2015, 162: C161
|
[31] |
Zhang J J, Ur Rahman Z, Zheng Y B, et al. Nanoflower like SnO2-TiO2 nanotubes composite photoelectrode for efficient photocathodic protection of 304 stainless steel [J]. Appl. Surf. Sci., 2018, 457: 516
|
[32] |
Chen R Z, Zhen C, Yang Y Q, et al. Boosting photoelectrochemical water splitting performance of Ta3N5 nanorod array photoanodes by forming a dual co-catalyst shell [J]. Nano Energy, 2019, 59: 683
|
[33] |
Yu J C, Lin J, Lo D, et al. Influence of thermal treatment on the adsorption of oxygen and photocatalytic activity of TiO2 [J]. Langmuir, 2000, 16: 7304
|
[34] |
Momeni M M, Mahvari M, Ghayeb Y. Photoelectrochemical properties of iron-cobalt WTiO2 nanotube photoanodes for water splitting and photocathodic protection of stainless steel [J]. J. Electroanal. Chem., 2019, 832: 7
|
[35] |
Liu Y P, Li Y H, Peng F, et al. 2H- and 1T- mixed phase few-layer MoS2 as a superior to Pt co-catalyst coated on TiO2 nanorod arrays for photocatalytic hydrogen evolution [J]. Appl. Catal., 2019, 241B: 236
|
[36] |
Sun M M, Chen Z Y, Bu Y Y. Enhanced photoelectrochemical cathodic protection performance of H2O2-treated In2O3 thin-film photoelectrode under visible light [J]. Surf. Coat. Technol., 2015, 266: 79
|
[37] |
Sun M M, Chen Z Y, Bu Y Y. Enhanced photoelectrochemical cathodic protection performance of the C3N4@In2O3 nanocomposite with quasi-shell-core structure under visible light [J]. J. Alloy. Compd., 2015, 618: 734
|
[38] |
Bu Y Y, Chen Z Y, Li W B, et al. High-efficiency photoelectrochemical properties by a highly crystalline CdS-sensitized ZnO nanorod array [J]. ACS Appl. Mater. Interfaces, 2013, 5: 5097
|
[39] |
Sun M M, Chen Z Y, Bu Y Y, et al. Effect of ZnO on the corrosion of zinc, Q235 carbon steel and 304 stainless steel under white light illumination [J]. Corros. Sci., 2014, 82: 77
|
[40] |
Zhang J, Liu Z. Progress in research on photo-cathodic protection [J]. Corros. Prot., 2015, 36: 250
|
[40] |
(张菁, 刘峥. 光致阴极保护研究进展 [J]. 腐蚀与防护, 2015, 36: 250)
|
[41] |
Zhen C, Wang L Z, Liu L, et al. Nonstoichiometric rutile TiO2 photoelectrodes for improved photoelectrochemical water splitting [J]. Chem. Commun., 2013, 49: 6191
|
[42] |
Li N, Liu G, Zhen C, et al. Battery performance and photocatalytic activity of mesoporous anatase TiO2 nanospheres/graphene composites by template-free self-assembly [J]. Adv. Funct. Mater., 2011, 21: 1717
|
[43] |
Bu Y Y, Chen Z Y. Role of polyaniline on the photocatalytic degradation and stability performance of the polyaniline/silver/silver phosphate composite under visible light [J]. ACS Appl. Mater. Interfaces, 2014, 6: 17589
|
[44] |
Song L Y, Ma X M, Chen Z Y, et al. The role of UV illumination on the initial atmospheric corrosion of 09CuPCrNi weathering steel in the presence of NaCl particles [J]. Corros. Sci., 2014, 87: 427
|
[45] |
Bu Y, Chen Z. Effect of hydrogen treatment on the photoelectrochemical properties of quantum dots sensitized ZnO nanorod array [J]. J. Power Sources, 2014, 272: 647
|
[46] |
Zhu X R. Corrosion and Protection of Metals in Marine Environment [M]. Beijing: National Defense Industry Press, 1999
|
[46] |
(朱相荣. 金属材料的海洋腐蚀与防护 [M]. 北京: 国防工业出版社, 1999)
|
[47] |
Xie X, Liu L, Chen R Z, et al. Long-term photoelectrochemical cathodic protection by Co(OH)2-modified TiO2 on 304 stainless steel in marine environment [J]. J. Electrochem. Soc., 2018, 165: H3154
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|