Please wait a minute...
中国腐蚀与防护学报  2020, Vol. 40 Issue (2): 123-130    DOI: 10.11902/1005.4537.2019.217
  研究报告 本期目录 | 过刊浏览 |
TiO2的制备及表面修饰工艺对其光电化学阴极保护性能的影响
解璇1,2, 刘莉1(), 王福会1
1 沈阳材料科学国家研究中心 东北大学联合研究部 沈阳 110819
2 中国科学院金属研究所 沈阳 110016
Effect of Preparation and Surface Modification of TiO2 on Its Photoelectrochemical Cathodic Protection Performance
XIE Xuan1,2, LIU Li1(), WANG Fuhui1
1 Shenyang National Laboratory for Materials Science, Northeastern University, Shenyang 110819, China
2 Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
全文: PDF(4556 KB)   HTML
摘要: 

采用连续离子层吸附反应法在TiO2表面沉积Co(OH)2,并将Co(OH)2热处理转化为CoOx的表面修饰方法制备高性能Co(OH)2/CoOx协同修饰TiO2纳米管光阳极材料。通过探讨Co(OH)2修饰次数、热处理温度以及保温时间,确定光阳极最佳性能的制备工艺条件,从光催化原理出发,阐明Co(OH)2/CoOx修饰提高光电性能机理。

关键词 TiO2Co(OH)2/CoOx修饰工艺调控光电性能阴极保护    
Abstract

Co(OH)2 was deposited firstly on the surface of nanotube TiO2 by successive ionic layer adsorption and reaction method, and then deposited Co(OH)2 was transformed partially into CoOx by post heat treatment, therewith the Co(OH)2/CoOx modified TiO2 nanotube was acquired as high performance photoanode material. By assessing the effect of the times of Co(OH)2 deposition, as well as the temperature and holding time of heat treatment on the performance of the Co(OH)2/CoOx modified TiO2 nanotube, the optimal processing parameters were determined for the preparation of the best photoanode material. Besides, the relevant mechanism was proposed to interpret the role of Co(OH)2/CoO surface modification in the enhancement of photoelectric performance of the TiO2 nanotube.

Key wordsTiO2    Co(OH)2/CoOx modification    process control    photoelectric property    cathodic    protection
收稿日期: 2019-06-13     
ZTFLH:  TG172  
基金资助:国家自然科学基金(51622106);国家自然科学基金(51871049)
通讯作者: 刘莉     E-mail: liuli@mail.neu.edu.cn
Corresponding author: LIU Li     E-mail: liuli@mail.neu.edu.cn
作者简介: 解璇,女,1992年生,博士生

引用本文:

解璇, 刘莉, 王福会. TiO2的制备及表面修饰工艺对其光电化学阴极保护性能的影响[J]. 中国腐蚀与防护学报, 2020, 40(2): 123-130.
Xuan XIE, Li LIU, Fuhui WANG. Effect of Preparation and Surface Modification of TiO2 on Its Photoelectrochemical Cathodic Protection Performance. Journal of Chinese Society for Corrosion and protection, 2020, 40(2): 123-130.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2019.217      或      https://www.jcscp.org/CN/Y2020/V40/I2/123

图1  样品制备工艺参数选择流程图
图2  TiO2纳米管材料的SEM微观形貌
图3  不同热处理温度下TiO2开路电位的变化曲线
图4  TiO2不同热处理温度对TiO2保护电流密度的影响
图5  Co(OH)2沉积次数对TiO2保护电位的影响
图6  Co(OH)2沉积次数对CoOx修饰的TiO2保护性能的影响
图7  热处理固定温度对CoOx修饰的TiO2保护电位的影响
图8  不同热处理固定保温时间对CoOx修饰的TiO2保护电位的影响
图9  光照下Co(OH)2/CoOx修饰的TiO2对304不锈钢的光电化学阴极保护机理
[1] Fujishima A, Honda K. Electrochemical photolysis of water at a semiconductor electrode [J]. Nature, 1972, 238(5358): 37
[2] Li S N, Fu J J. Improvement in corrosion protection properties of TiO2 coatings by chromium doping [J]. Corros. Sci., 2013, 68: 101
[3] Chen Y Q, Zhao S, Chen M Y, et al. Sandwiched polydopamine (PDA) layer for titanium dioxide (TiO2) coating on magnesium to enhance corrosion protection [J]. Corros. Sci., 2015, 96: 67
[4] Lei C X, Feng Z D, Zhou H. Visible-light-driven photogenerated cathodic protection of stainless steel by liquid-phase-deposited TiO2 films [J]. Electrochim. Acta, 2012, 68: 134
[5] Akpan U G, Hameed B H. The advancements in sol-gel method of doped-TiO2 photocatalysts [J]. Appl. Catal., 2010, 375A: 1
[6] Kumar S G, Devi L G. Review on modified TiO2 photocatalysis under UV/visible light: Selected results and related mechanisms on interfacial charge carrier transfer dynamics [J]. J. Phys. Chem., 2011, 115A: 13211
[7] Yuan J N, Tsujikawa S. Photo-effects of sol-gel derived TiO2 coating on carbon steel in alkaline solution [J]. Zairyo-to-Kankyo, 1995, 44: 534
[8] Pablos C, Marugán J, Van Grieken R, et al. Correlation between photoelectrochemical behaviour and photoelectrocatalytic activity and scaling-up of P25-TiO2 electrodes [J]. Electrochim. Acta, 2014, 130: 261
[9] Liu G, Yang H G, Pan J, et al. Titanium dioxide crystals with tailored facets [J]. Chem. Rev., 2014, 114: 9559
[10] Pan J, Liu G, Lu G Q, et al. On the true photoreactivity order of {001}, {010}, and {101} facets of anatase TiO2 crystals [J]. Angew. Chem. Int. Ed., 2011, 50: 2133
[11] Xie Y P, Yu Z B, Liu G, et al. CdS-mesoporous ZnS core-shell particles for efficient and stable photocatalytic hydrogen evolution under visible light [J]. Energy Environ. Sci., 2014, 7: 1895
[12] Liu G, Wang L Z, Yang H G, et al. Titania-based photocatalysts-crystal growth, doping and heterostructuring [J]. J. Mater. Chem., 2010, 20: 831
[13] Niu P, Yin L C, Yang Y Q, et al. Increasing the visible light absorption of graphitic carbon nitride (melon) photocatalysts by homogeneous self-modification with nitrogen vacancies [J]. Adv. Mater., 2014, 26: 8046
[14] Zhang G G, Zang S H, Wang X C. Layered Co(OH)2 deposited polymeric carbon nitrides for photocatalytic water oxidation [J]. ACS Catal., 2015, 5: 941
[15] Lee R L, Tran P D, Pramana S S, et al. Assembling graphitic-carbon-nitride with cobalt-oxide-phosphate to construct an efficient hybrid photocatalyst for water splitting application [J]. Catal. Sci. Technol., 2013, 3: 1694
[16] Yang J H, Wang D G, Han H X, et al. Roles of cocatalysts in photocatalysis and photoelectrocatalysis [J]. Acc. Chem. Res., 2013, 46: 1900
[17] Rosseler O, Shankar M V, Du M K L, et al. Solar light photocatalytic hydrogen production from water over Pt and Au/TiO2 (anatase/rutile) photocatalysts: Influence of noble metal and porogen promotion [J]. J. Catal., 2010, 269: 179
[18] Zhu M S, Chen P L, Liu M H. High-performance visible-light-driven plasmonic photocatalysts Ag/AgCl with controlled size and shape using graphene oxide as capping agent and catalyst promoter [J]. Langmuir, 2013, 29: 9259
[19] Jacobs G, Graham U, Chenu E, et al. Low-temperature water-gas shift: Impact of Pt promoter loading on the partial reduction of ceria and consequences for catalyst design [J]. J. Catal., 2005, 229: 499
[20] Liu M Y, You W S, Lei Z B, et al. Water reduction and oxidation on Pt-Ru/Y2Ta2O5N2 catalyst under visible light irradiation [J]. Chem. Commun., 2004, (19): 2192
[21] Wang L, Dionigi F, Nguyen N T, et al. Tantalum nitride nanorod arrays: Introducing Ni-Fe layered double hydroxides as a cocatalyst strongly stabilizing photoanodes in water splitting [J]. Chem. Mater., 2015, 27: 2360
[22] Hutchings G S, Zhang Y, Li J, et al. In situ formation of cobalt oxide nanocubanes as efficient oxygen evolution catalysts [J]. J. Am. Chem. Soc., 2015, 137: 4223
[23] Irshad A, Munichandraiah N. An oxygen evolution Co-Ac catalyst-the synergistic effect of phosphate ions [J]. Phys. Chem. Chem. Phys., 2014, 16: 5412
[24] Qorbani M, Naseri N, Moshfegh A Z. Hierarchical Co3O4/Co(OH)2 nanoflakes as a supercapacitor electrode: Experimental and semi-empirical model [J]. ACS Appl. Mater. Interfaces, 2015, 7: 11172
[25] Grünert W, Brückner A, Hofmeister H, et al. Structural properties of Ag/TiO2 catalysts for acrolein hydrogenation [J]. J. Phys. Chem., 2004, 108B: 5709
[26] Lin C H, Chao J H, Liu C H, et al. Effect of calcination temperature on the structure of a Pt/TiO2 (B) nanofiber and its photocatalytic activity in generating H2 [J]. Langmuir, 2008, 24: 9907
[27] Wei N, Liu Y, Zhang T T, et al. Hydrogenated TiO2 nanotube arrays with enhanced photoelectrochemical property for photocathodic protection under visible light [J]. Mater. Lett., 2016, 185: 81
[28] Yang J H, Yan H J, Wang X L, et al. Roles of cocatalysts in Pt-PdS/CdS with exceptionally high quantum efficiency for photocatalytic hydrogen production [J]. J. Catal., 2012, 290: 151
[29] Lin Z Q, Lai Y K, Hu R G, et al. A highly efficient ZnS/CdS@TiO2 photoelectrode for photogenerated cathodic protection of metals [J]. Electrochim. Acta, 2010, 55: 8717
[30] Hu J, Zhu Y F, Liu Q, et al. SnO2 nanoparticle films prepared by pulse current deposition for photocathodic protection of stainless steel [J]. J. Electrochem. Soc., 2015, 162: C161
[31] Zhang J J, Ur Rahman Z, Zheng Y B, et al. Nanoflower like SnO2-TiO2 nanotubes composite photoelectrode for efficient photocathodic protection of 304 stainless steel [J]. Appl. Surf. Sci., 2018, 457: 516
[32] Chen R Z, Zhen C, Yang Y Q, et al. Boosting photoelectrochemical water splitting performance of Ta3N5 nanorod array photoanodes by forming a dual co-catalyst shell [J]. Nano Energy, 2019, 59: 683
[33] Yu J C, Lin J, Lo D, et al. Influence of thermal treatment on the adsorption of oxygen and photocatalytic activity of TiO2 [J]. Langmuir, 2000, 16: 7304
[34] Momeni M M, Mahvari M, Ghayeb Y. Photoelectrochemical properties of iron-cobalt WTiO2 nanotube photoanodes for water splitting and photocathodic protection of stainless steel [J]. J. Electroanal. Chem., 2019, 832: 7
[35] Liu Y P, Li Y H, Peng F, et al. 2H- and 1T- mixed phase few-layer MoS2 as a superior to Pt co-catalyst coated on TiO2 nanorod arrays for photocatalytic hydrogen evolution [J]. Appl. Catal., 2019, 241B: 236
[36] Sun M M, Chen Z Y, Bu Y Y. Enhanced photoelectrochemical cathodic protection performance of H2O2-treated In2O3 thin-film photoelectrode under visible light [J]. Surf. Coat. Technol., 2015, 266: 79
[37] Sun M M, Chen Z Y, Bu Y Y. Enhanced photoelectrochemical cathodic protection performance of the C3N4@In2O3 nanocomposite with quasi-shell-core structure under visible light [J]. J. Alloy. Compd., 2015, 618: 734
[38] Bu Y Y, Chen Z Y, Li W B, et al. High-efficiency photoelectrochemical properties by a highly crystalline CdS-sensitized ZnO nanorod array [J]. ACS Appl. Mater. Interfaces, 2013, 5: 5097
[39] Sun M M, Chen Z Y, Bu Y Y, et al. Effect of ZnO on the corrosion of zinc, Q235 carbon steel and 304 stainless steel under white light illumination [J]. Corros. Sci., 2014, 82: 77
[40] Zhang J, Liu Z. Progress in research on photo-cathodic protection [J]. Corros. Prot., 2015, 36: 250
[40] (张菁, 刘峥. 光致阴极保护研究进展 [J]. 腐蚀与防护, 2015, 36: 250)
[41] Zhen C, Wang L Z, Liu L, et al. Nonstoichiometric rutile TiO2 photoelectrodes for improved photoelectrochemical water splitting [J]. Chem. Commun., 2013, 49: 6191
[42] Li N, Liu G, Zhen C, et al. Battery performance and photocatalytic activity of mesoporous anatase TiO2 nanospheres/graphene composites by template-free self-assembly [J]. Adv. Funct. Mater., 2011, 21: 1717
[43] Bu Y Y, Chen Z Y. Role of polyaniline on the photocatalytic degradation and stability performance of the polyaniline/silver/silver phosphate composite under visible light [J]. ACS Appl. Mater. Interfaces, 2014, 6: 17589
[44] Song L Y, Ma X M, Chen Z Y, et al. The role of UV illumination on the initial atmospheric corrosion of 09CuPCrNi weathering steel in the presence of NaCl particles [J]. Corros. Sci., 2014, 87: 427
[45] Bu Y, Chen Z. Effect of hydrogen treatment on the photoelectrochemical properties of quantum dots sensitized ZnO nanorod array [J]. J. Power Sources, 2014, 272: 647
[46] Zhu X R. Corrosion and Protection of Metals in Marine Environment [M]. Beijing: National Defense Industry Press, 1999
[46] (朱相荣. 金属材料的海洋腐蚀与防护 [M]. 北京: 国防工业出版社, 1999)
[47] Xie X, Liu L, Chen R Z, et al. Long-term photoelectrochemical cathodic protection by Co(OH)2-modified TiO2 on 304 stainless steel in marine environment [J]. J. Electrochem. Soc., 2018, 165: H3154
[1] 戴明杰, 刘静, 黄峰, 胡骞, 李爽. 基于正交方法研究阴极保护电位波动下X100管线钢的点蚀行为[J]. 中国腐蚀与防护学报, 2020, 40(5): 425-431.
[2] 梁毅, 杜艳霞. 交流干扰和阴极保护协同作用下的腐蚀评判标准与机理研究进展[J]. 中国腐蚀与防护学报, 2020, 40(3): 215-222.
[3] 赵书彦,童鑫红,刘福春,翁金钰,韩恩厚,郦晓慧,杨林. 环氧富锌涂层防腐蚀性能研究[J]. 中国腐蚀与防护学报, 2019, 39(6): 563-570.
[4] 王贵容,邵亚薇,王艳秋,孟国哲,刘斌. 阴极保护电位对破损环氧涂层阴极剥离的影响[J]. 中国腐蚀与防护学报, 2019, 39(3): 235-244.
[5] 廖彤,马峥,李蕾蕾,马秀敏,王秀通,侯保荣. Fe2O3/TiO2纳米复合材料对304不锈钢的光生阴极保护性能[J]. 中国腐蚀与防护学报, 2019, 39(1): 36-42.
[6] 赖德林,孔纲,车淳山. 硅酸盐封闭对TiO2转化膜耐蚀性的影响[J]. 中国腐蚀与防护学报, 2018, 38(6): 607-614.
[7] 邱萍, 杨连捷, 宋玉, 杨鸿飞. 添加DMF对TiO2薄膜光生阴极保护性能影响研究[J]. 中国腐蚀与防护学报, 2018, 38(3): 289-295.
[8] 寇杰, 张新策, 崔淦, 杨宝安. 储罐底板阴极保护电位分布研究进展[J]. 中国腐蚀与防护学报, 2017, 37(4): 305-314.
[9] 王晓霖, 闫茂成, 舒韵, 孙成, 柯伟. 破损涂层下管线钢的交流电干扰腐蚀行为[J]. 中国腐蚀与防护学报, 2017, 37(4): 341-346.
[10] 王廷勇,马兰英,汪相辰,张海兵,陈凯,闫永贵. 某核电站凝汽器在海水中阴极保护参数的研究及应用[J]. 中国腐蚀与防护学报, 2016, 36(6): 624-630.
[11] 杨霜,唐囡,闫茂成,赵康文,孙成,许进,于长坤. 温度对X80管线钢酸性红壤腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2015, 35(3): 227-232.
[12] 刘在健,王佳,张彭辉,王燕华,张源. 5083铝合金在海水中的腐蚀行为及其阴极保护研究[J]. 中国腐蚀与防护学报, 2015, 35(3): 239-244.
[13] 许洪梅, 柳伟, 曹立新, 苏革, 高荣杰. 304不锈钢表面ZnO/TiO2复合薄膜的制备与光生阴极防腐蚀性能研究[J]. 中国腐蚀与防护学报, 2014, 34(6): 507-514.
[14] 范丰钦, 宋积文, 李成杰, 杜敏. 海水流速对DH36平台钢阴极保护的影响[J]. 中国腐蚀与防护学报, 2014, 34(6): 550-557.
[15] 邱景, 杜敏, 陆原, 张颖, 郭海军, 李成杰. X65碳钢在模拟油田采出水中的阴极保护研究[J]. 中国腐蚀与防护学报, 2014, 34(4): 333-338.