Please wait a minute...
中国腐蚀与防护学报  2012, Vol. 32 Issue (6): 491-495    
  研究报告 本期目录 | 过刊浏览 |
铝含量对超塑性锌铝合金腐蚀行为的影响
杨丽景,张阳明,宋振纶
中国科学院宁波材料技术与工程研究所 315201
INFLUENCE OF ALUMINIUM CONTENT ON CORROSION BEHAVIOR OF SUPERPLASTIC Zn-Al ALLOYS
YANG Lijing, ZHANG Yangming, SONG Zhenlun
Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201
全文: PDF(2129 KB)  
摘要: 

通过比较不同Al含量的超塑性Zn-Al合金在模拟酸雨溶液中的腐蚀行为,系统研究了超塑性Zn-Al合金在酸雨环境中的腐蚀机理。结果表明,Zn-Al合金在模拟酸雨溶液中发生的腐蚀行为与其显微组织有关。富Al相优先腐蚀,随着合金中Al含量的提高富Al相增多,合金的腐蚀速率反而下降。这是因为ZA4合金与ZA8合金晶界上分布有不连续的富Al相,腐蚀产物不致密,腐蚀坑逐渐向纵深方向发展,腐蚀速率相对较高。而ZA12合金与ZA16合金存在连续分布的富Al相,其表面形成致密的腐蚀产物膜,能有效阻碍反应的进行。

关键词 超塑性Zn合金腐蚀模拟酸雨    
Abstract

The influence of aluminium content on the corrosion behavior of superplastic Zn-Al alloys immersed in simulated acid rain was investigated. The results showed that, the corrosion behavior of the Zn-Al alloy in simulated acid rain solution was related to the microstructure of the alloy. Al-rich phase was prone to preferential attack, but the corrosion rate of the alloy was decreased with the aluminum content of the alloys increases. There was a discontinuous Al-rich phase distributed on the grain boundaries of ZA4 alloy and ZA8 alloy, the corrosion products were loose and the corrosion pits were deeper, that resulted in a relatively high corrosion rate, whereas the corrosion reaction can be effectively blocked by the continuous distribution of Al-rich phase of ZA12 alloy and ZA16 alloy.

Key wordsSuperplastic    zinc alloy    corrosion    simulated acid rain
收稿日期: 2011-12-14     
ZTFLH:  TG171  
基金资助:

国家科技支持计划(2009BAE71B05,2009BAE71B06)和宁波市自然科学基金(2012A610057)资助

通讯作者: 宋振纶     E-mail: songzhenlun@nimte.ac.cn
Corresponding author: SONG Zhenlun     E-mail: songzhenlun@nimte.ac.cn
作者简介: 杨丽景,女,1982年生,博士后,研究方向为金属腐蚀与防护

引用本文:

杨丽景,张阳明,宋振纶. 铝含量对超塑性锌铝合金腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2012, 32(6): 491-495.
YANG Lijing, ZHANG Yangming, SONG Zhenlun. INFLUENCE OF ALUMINIUM CONTENT ON CORROSION BEHAVIOR OF SUPERPLASTIC Zn-Al ALLOYS. Journal of Chinese Society for Corrosion and protection, 2012, 32(6): 491-495.

链接本文:

https://www.jcscp.org/CN/      或      https://www.jcscp.org/CN/Y2012/V32/I6/491

 


[1] Ha T K, Son J R, Lee W B, et al. Superplastic deformation of a fine-grained Zn-0.3wt.%Al alloy at room temperature [J]. Mater. Sci. Eng. 2001, A307(1-2): 98-106

[2] Azmat N S, Ralston K D, Muddle B C, et al. Corrosion of Zn under acidified marine droplets [J]. Corros. Sci., 2011, 53(4): 1604-1615

[3] Su H Q, Shi Z L, Lin P H, et al. The corrosion behaviour of cast ZA27 alloy in neutral medium [J]. Jiangsu Metall., 1995 (2): 62-64

 (苏华钦, 施忠良, 林萍华等. 铸造ZA27合金中性介质中的腐蚀行为 [J]. 江苏冶金, 1995 (2): 62-64)

[4] Qu Q, Yan C, Wan Y, et al. Effects of NaCl and SO2 on the initial atmospheric corrosion of zinc [J]. Corros. Sci., 2002, 44(12): 2789-2803

[5] Ramanauskas R, Juskenas R, Kalinicenko A, et al. Microstructure and corrosion resistance of electrodeposited zinc alloy coatings [J]. J. Solid State Electrochem., 2004, 8(6): 416-421

[6] Odnevall I, Leygraf C. Formation of NaZn4Cl(OH)6SO4·6H2O in a marine atmosphere [J]. Corros. Sci., 1993, 34(8): 1213-1229

[7] Devillers L P, Niessen P. The mechanism of intergranular corrosion of dilute zinc-aluminium alloys in hot water [J]. Corros. Sci., 1976, 16 (4): 243-250

[8] Volovitch P, Vu T N, Allely C, et al. Understanding corrosion via corrosion product characterization: II. Role of alloying elements in improving the corrosion resistance of Zn-Al-Mg coatings on steel [J]. Corros. Sci., 2011, 53(8): 2437-2445

[9] Shi Q M, Shao Y W, Zhang T, et al. Protection dimension of scratched zinc phosphate/epoxy coating [J]. J. Chin. Soc. Corros. Prot., 2011, 31(5): 389-394

(石秋梅, 邵亚薇, 张涛等. 磷酸锌对环氧涂层划痕的保护尺寸研究 [J]. 中国腐蚀与防护学报, 2011, 31(5): 389-394)

[10] Edavan R P, Richard K, Corrosion resistance of painted zinc alloy coated steels [J]. Corros. Sci., 2009, 51(10): 2429-2442

[11] Chen B K, Hao X D, Jiang S M, et al. Analysis of spangles inhomogeneous defect for galvalume [J]. J. Chin. Soc. Corros. Prot., 2011, 31(2): 101-104

(陈斌锴, 郝晓东, 江社明等. 热浸镀铝锌硅镀层锌花不均缺陷形成原因分析[J].

中国腐蚀与防护学报, 2011, 31(2): 101-104)

[12] Rosalbino F. Application of EIS to assess the

effect of rare earths small addition on the corrosion

behaviour of Zn-5%Al (Galfan) alloy in neutral aerated sodium chloride solution [J]. Electrochim. Acta. 2009, 54(4): 1204-1209

[13] Pang X Z. Study on Corrosion Resistance of ZA27 Alloy [D]. Guangxi University, 2006

(庞兴志. ZA27合金的耐腐蚀性研究[D]. 广西: 广西大学, 2006)

[14] Pan Y J, Zhang H, Huang N, et al. Corrosion resistance of Zn, Al and Zn-15%Al alloy in water of Yangtze river [J]. Corros. Sci. Prot. Technol., 2003, 15(4): 231-233

(潘应君, 张恒, 黄宁等. Zn-Al合金在长江水中的耐蚀性研究 [J]. 腐蚀科学与防护技术, 2003, 15(4): 231-233

[15] Zhang X Y, Han E H, Li H X, et al. Estimation of the corrosion losses by the acidic rain in China [J]. J. Chin. Soc. Corros. Prot., 2002, 22(5): 316-319

(张学元, 韩恩厚, 李洪锡等. 中国的酸雨对材料腐蚀的经济损失估算 [J]. 中国腐蚀与防护学报, 2002, 22(5): 316-319

[16] Magaino S, Soga M, Sobue K, et al. Zinc corrosion in simulated acid rain [J]. Electrochim. Acta, 1999, 44(24): 4307-4312

[17] Shen L, Song Z L. Corrosion behavior of superplastic Zn-Al alloys [J]. Corros. Prot., 2011, 32(10): 761-764

(沈磊, 宋振纶, 超塑性Zn-Al合金的腐蚀行为[J]. 腐蚀与防护, 2011, 32(10): 761-764)

[1] 董续成, 管方, 徐利婷, 段继周, 侯保荣. 海洋环境硫酸盐还原菌对金属材料腐蚀机理的研究进展[J]. 中国腐蚀与防护学报, 2021, 41(1): 1-12.
[2] 唐荣茂, 朱亦晨, 刘光明, 刘永强, 刘欣, 裴锋. Q235钢/导电混凝土在3种典型土壤环境中腐蚀的灰色关联度分析[J]. 中国腐蚀与防护学报, 2021, 41(1): 110-116.
[3] 韩月桐, 张鹏超, 史杰夫, 李婷, 孙俊才. 质子交换膜燃料电池中TA1双极板的表面改性研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 125-130.
[4] 张雨轩, 陈翠颖, 刘宏伟, 李伟华. 铝合金霉菌腐蚀研究进展[J]. 中国腐蚀与防护学报, 2021, 41(1): 13-21.
[5] 冉斗, 孟惠民, 刘星, 李全德, 巩秀芳, 倪荣, 姜英, 龚显龙, 戴君, 隆彬. pH对14Cr12Ni3WMoV不锈钢在含氯溶液中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2021, 41(1): 51-59.
[6] 左勇, 曹明鹏, 申淼, 杨新梅. MgCl2-NaCl-KCl熔盐体系中金属Mg对316H不锈钢的缓蚀性能研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 80-86.
[7] 王欣彤, 陈旭, 韩镇泽, 李承媛, 王岐山. 硫酸盐还原菌作用下2205双相不锈钢在3.5%NaCl溶液中应力腐蚀开裂行为研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 43-50.
[8] 史昆玉, 吴伟进, 张毅, 万毅, 于传浩. TC4表面沉积Nb涂层在模拟体液环境下的电化学性能研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 71-79.
[9] 郑黎, 王美婷, 于宝义. 镁合金表面冷喷涂技术研究进展[J]. 中国腐蚀与防护学报, 2021, 41(1): 22-28.
[10] 于宏飞, 邵博, 张悦, 杨延格. 2A12铝合金锆基转化膜的制备及性能研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 101-109.
[11] 贾世超, 高佳祺, 郭浩, 王超, 陈杨杨, 李旗, 田一梅. 再生水水质因素对铸铁管道的腐蚀研究[J]. 中国腐蚀与防护学报, 2020, 40(6): 569-576.
[12] 赵鹏雄, 武玮, 淡勇. 空间分辨技术在金属腐蚀原位监测中的应用[J]. 中国腐蚀与防护学报, 2020, 40(6): 495-507.
[13] 马鸣蔚, 赵志浩, 荆思文, 于文峰, 谷义恩, 王旭, 吴明. 17-4 PH不锈钢在含SRB的模拟海水中的应力腐蚀开裂行为研究[J]. 中国腐蚀与防护学报, 2020, 40(6): 523-528.
[14] 岳亮亮, 马保吉. 超声表面滚压对AZ31B镁合金腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2020, 40(6): 560-568.
[15] 艾芳芳, 陈义庆, 钟彬, 李琳, 高鹏, 伞宏宇, 苏显栋. T95油井管在酸性油气田环境中的应力腐蚀开裂行为及机制[J]. 中国腐蚀与防护学报, 2020, 40(5): 469-473.