|
|
蛋白质作用下医用金属材料的腐蚀行为研究进展 |
刘成龙1,王猛1,张春艳1,王玥霁2,曾荣昌1,黄伟九1 |
1. 重庆理工大学材料科学与工程学院 重庆 400050
2. 重庆 理工大学应用技术学院 重庆 400050 |
|
PROGRESS IN CORROSION BEHAVIOR INVESTIGATION OF BIOMEDICAL METALLIC MATERIALS INFLUENCED BY PROTEINS |
LIU Chenglong1, WANG Meng1, ZHANG Chunyan1, WANG Yueji2,ZENG Rongchang1, HUANG Weijiu1 |
1. School of Materials Science and Engineering, Chongqing University of Technology, Chongqing 400050
2. School of Applied Technology, Chongqing University of Technology,Chongqing 400050 |
引用本文:
刘成龙,王猛,张春艳,王玥霁,曾荣昌,黄伟九. 蛋白质作用下医用金属材料的腐蚀行为研究进展[J]. 中国腐蚀与防护学报, 2011, 31(1): 10-17.
LIU Cheng-Long,
ZHANG Xin-Meng.
PROGRESS IN CORROSION BEHAVIOR INVESTIGATION OF BIOMEDICAL METALLIC MATERIALS INFLUENCED BY PROTEINS. J Chin Soc Corr Pro, 2011, 31(1): 10-17.
链接本文:
https://www.jcscp.org/CN/
或
https://www.jcscp.org/CN/Y2011/V31/I1/10
|
[1] Li S P. Introduction of Biomedical Materials [M]. Wuhan: Wuhan University of Technology Press, 2000: 52-55 (李世普. 生物医用材料导论 [M]. 武汉: 武汉工业大学出版社,2000:52-55)[2] Cui F Z, Feng Q L. Biomaterials Science [M]. Beijing: Tsinghua University Press, 2004: 8-10 (崔福斋,冯庆玲. 生物材料学 [M]. 北京: 清华大学出版社,2004: 8-10)[3] Mudali U K, Sridhar T M, Raj B. Corrosion of bioimplants [J].Sadhana, 2003, 28: 601-637[4] Yan H H, Zhao S F, Chen G F. Review of the absorption mechanism for proteins on metal surfaces [J]. Chin. J. Oral Implantol., 1997,2(4): 189-193 (严洪海,赵士芳,陈关福. 金属表面的蛋白吸附的机理研究现状 [J]. 中国口腔种植学杂志,1997,2(4): 189-193)[5] Li G C, Zhu S F, Yang P, et al. Investigation of protein adsorption by quartz crystal microbalance [J]. Sens. World, 2007,12: 6-10 (李贵才,朱生发,杨苹等. 石英晶体微天平在蛋白吸附领域的研究进展 [J]. 传感器世界,2007, 12: 6-10)[6] Yan H H, Zhao S F, Chen G F. Research methods for protein absorption on the surface of biomedical metal materials [J]. Chin.J. Oral Implantol., 1998, 3(2): 89-92 (严洪海,赵士芳,陈关福. 金属生物材料表面的蛋白吸附的研究方法 [J]. 中国口腔种植学杂志,1998,3(2): 89-92)[7] Zhong B, Zhang H. Evolution of theoretical study on protein adsorption on solid substrates [J]. J. Shenyang Normal Univ. (Nat.Sci.), 2006, 24(2): 158-160 (钟博,张辉. 固体表面蛋白质吸附理论研究进展 [J]. 沈阳师范大学学报, 2006, 24(2):158-160)[8] Haynes C A, Norde W. Globular proteins at solid/liquid interfaces [J]. Coll. Surf. B: Biointerfaces, 1994; 2: 517-566[9] Baier R. Conditioning surface to suit the biomedical environment recent progress [J]. J. Biomech. Eng., 1982, 104: 257-271[10] Arnebrant T, Ivarsson B, Larsson K, et al. Bilayer formation at adsorption of proteins from aqueous solutions on metal surfaces [J].Prog. Colloid Polym. Sci., 1985, 70: 62-66[11] Li Y, Cheng R S. Development of studying for protein adsorption on the solid surface [J]. Chin. Polym. Bull., 2007, 3: 41-49 (李艺,程镕时. 蛋白质在固体表面吸附的研究进展 [J]. 高分子通报, 2007,3: 41-49)[12] Serro A, Fernandes A C, Saramago B, et al. Bovine serum albumin adsorption on titania surfaces and its relation to wettability aspects [J]. J. Biomed. Mater. Res., 1999, 46: 376-381[13] Zhou H, Huo D Q. Study of adsorption and competitive adsorption of plasma proteins onto the surfaces of biomaterial [D]. Chongqing:Chongqing University, 2007 (周浩,霍丹群. 血浆蛋白质在生物材料表面的吸附和竞争吸附 [D]. 重庆:重庆大学, 2007)[14] Kang C K, Lee Y S. The surface modification of stainless steel and the correlation between the surface properties and protein adsorption [J]. J. Mater. Sci.: Mater. Med., 2007, 18: 1389-1398[15] Krajewski A, Piancastelli A, Malavolti R. Albumin adhesion on ceramics and correlation with their Z-potential [J]. Biomaterials,1998, 19: 637-641[16] Huang J, Le Y L, Zheng C Q. Vorman effect of plasma protein adsorption to biomaterials surfaces [J]. J. Biomed.Eng., 1999, 66(3): 371-376 (黄嘉,乐以伦,郑昌琼. 血浆蛋白质在生物材料表面吸附时的Vorman效应 [J]. 生物医学工程学杂志, 1999, 66(3): 371-376)[17] Norde W, Lyklema J. Why proteins prefer interfaces [J]. J.Biomater. Sci. Polym., 1991, 2: 183-202[18] Willams R L, Willams D F. Albumin adsorption on metal surface [J].Biomaterials, 1988, 9: 206-212[19] Klinger A, Steinberg D, Kohavi M N. Mechanism of adsorption of human albumin to titanium in vitro [J]. J. Biomed.Mater. Res., 1997, 36: 387-392[20] Clark G C F, Williams D F. The effects of proteins on metallic corrosion [J]. Biomed. Mater.Res., 1982, 16: 125-134[21] Contu F, Elsener B, Bohni H.Characterization of implant materials in fetal bovine serum and sodium sulfate by electrochemical impedance spectroscopy. I.Mechanically polished samples [J]. J. Biomed. Mater. Res.,2002, 62: 412-421[22] Okazaki Y, Tateishi T, Ito Y. Corrosion resistance of implant alloys in pseudo physiological solution and role of alloying elements in passive films [J]. Mater. Trans., 1997,38: 78-84[23] Williams R L, Brown S A, Merritt K. Electrochemical studies on the influence of proteins on the corrosion of implant alloys [J]. Biomaterials, 1988, 9: 181-186[24] Sousa S R, Barbosa M A. Corrosion resistance of titanium CP in saline physiological solutions with calcium phosphate and proteins [J]. Clin. Mater.,1993, 14: 287-294[25] Speck K M, Fraker A C. Anodic polarization behavior of Ti-Ni and Ti-6AI-4V in simulated physiological solutions [J]. J. Dent. Res., 1980, 59: 1590-1595[26] Rondelli G, Torricelli P, Fini M, et al. In vitro corrosion study by EIS of an equiatomic NiTi alloy and an implant quality AISI 316 stainless steel [J]. J.Biomed. Mater. Res. Part B: Appl. Biomat., 2006, 79B: 320-324[27] Cheng X L, Sharon G R. Corrosion behavior of titanium in the presence of calcium phosphate and serum proteins [J]. Biomaterials,2005, 26: 7350-7356[28] Hanawa T, Kohayama Y, Hiromoto S, et al.Effects of biological factors on the repassivation current of titanium [J]. Mater. Trans., 2004, 45: 1635-1639[29] Khan M A, Williams R L, Williams D F. The corrosion behavior of Ti6Al4V, Ti6Al7Nb and Ti13Nb13Zr in protein solutions [J].Biomaterials, 1999, 20: 631-637[30] Querd A, A-Dumont C, Normand B, et al. Reactivity of titanium in physiological medium [J]. J. Electrochem. Soc., 2007,154: C593-C601[31] Lima J, Sousa S R, Ferreira A, et al.Interactions between calcium, phosphate, and albumin on the surface of titanium [J]. J. Biomed. Mater. Res., 2001, 55: 45-53[32] Lewis A C, Heard P J. The effect of calcium phosphate deposition upon corrosion of CoCr alloys and the potential for implant failure [J].J. Biomed. Mater. Res., 2005, 75A: 365-373[33] Takemoto S, Hattori M, Yoshinari M, et al. Corrosion behavior and surface characterization of titanium in solution containing fluoride and albumin [J]. Biomaterials, 2005, 26: 829-837[34] Ide K, Hattori M,Hasegawa K, et al. The effect of fluoride and albumin on corrosion of titanium [J]. J. Dent. Res., 2001, 80: 663-670[35] Ide K, Hattori M, Yoshinari M, et al. The influence of albumin on corrosion resistance of titanium in fluoride solution [J]. J. Dent.Mater, 2003, 22(3): 359-70[36] Huang H H. Effect of fluoride and albumin concentration on the corrosion behavior of Ti-6Al-4V alloy [J].Biomaterials, 2003, 24: 275-282[37] Khan M A, Williams R L, Williams D F. Conjoint corrosion and wear in titanium alloys [J]. Biomaterials, 1999, 20: 765-772[38] Brown S A, Merritt K, Fraker A C, et al. Second Symposium of Corrosion and Degradation of Implant Materials [C]. Philadelphia, 1985: 105-116[39] Contu F, Elsener,Bohni H. A study of the potentials achieved during mechanical abrasion and the repassivation rate of titanium and Ti6Al4V in inorganic buffer solutions and bovine serum [J]. Electrochim. Acta,2004, 50: 33-41[40] Hiromoto S, Mischler S. The influence of proteins on the fretting-corrosion behavior of a Ti6Al4V alloy [J].Wear, 2006, 261: 1002-1011[41] Kocijan A, Milosev I. The influence of complexing agent and proteins on the corrosion of stainless and their metal components [J]. J. Mater. Sci.: Mater. Med., 2003, 14: 69-77[42] Tang Y C, Katsuma S, Fujimoto S, et al. Electrochemical study of type 304 and 316 stainless steels in simulated body fluids and cell cultures [J]. Electrochim. Acta, 2006, 2: 709-715[43] Sousa S R, Barbosa M A. Electrochemistry of AISI 316L stainless steel in calcium phosphate and protein solutions [J]. J. Mater.Sci.: Mater. Med., 1991, 2: 19-26[44] Brown S A, Merritt K.Electrochemical corrosion in saline and serum [J]. J. Biomed. Mater.Res., 1980, 14, 173-175[45] Valero V C, Igual M A. Electrochemical characterization of biomedical alloys for surgical implants in simulated body fluids [J]. Corros. Sci., 2008, 50: 1954-1961[46] Omanovic S, Roscoe S. Electrochemical studies of the adsorption behavior of bovine serum albumin on stainless steel [J]. Langmuir,1999, 15: 8315-8321[47] Guo L, Liang C H, Guo H X, et al. Effect of fibrinogen on corrosion behavior of stainless steel in artificial blood solution [J]. J. Biomed. Eng., 2001, 18(4): 565-567 (郭亮,梁成浩,郭海霞等. 纤维蛋白原对模拟人工体液中不锈钢腐蚀行为的影响 [J]. 生物医学工程学杂志, 2001, 18(4): 565-567)[48] Frateur I, Lartundo-R L, Methivier C, et al. Influence of bovine serum albumin in sulphuric acid aqueous solution on the corrosion and the passivation of an iron-chromium [J]. Electrochim.Acta, 2006, 51: 1550-1557[49] Hsu H M, Buchanan R A. Serum concentration effects on the biocorrosion of surgical stainless steel [J]. Trans. Soc. Biomat.,1984, 7: 128-132[50] Rondelli G, Torricelli P, Fini M. et al. In vitro corrosion study by EIS of a nickel-free stainless steel for orthopaedic applications [J]. Biomaterials, 2005, 26: 739-744[51] Singh R, Dahotre N B. Corrosion degradation and prevention by surface modification of biometallic materials [J]. J. Mater. Sci.:Mater. Med., 2007, 18: 725-751[52] Badawy W A, Al-Kharafi F M, Al-Ajimi J R. Electrochemical behavior of cobalt in aqueous solutions of different pH [J]. J. Appl. Electrochem., 2000, 30: 693-704[53] Milosev I, Strehblow H H. The composition of the surface passive film formed on CoCrMo alloy in simulated physiological solution [J]. Electrochim. Acta, 2003, 48: 2767-2774[54] Lewis A C, Kilburn M R, Allen G C, et al. Effect of synovial fluid, phosphate-buffered saline solution, and water on the dissolution and corrosion properties of CoCrMo alloys as used in orthopedic implants [J]. J. Biomed. Mater. Res., 2005, 73A: 456-467[55] Hallab N J, Skipor A, Jacobs J J. Interfacial kinetics of titanium- and cobalt-based implant alloys in human serum: Metal release and biofilm formation [J]. J. Biomed. Mater. Res., 2003,65A: 311-318[56] Liang C H, Guo H X, Zheng R F. The effect of fibrinogen on the corrosion behavior of CoCrNi alloys in PBS simulated body fluid [J]. Rare Met. Mater. Eng., 2006, 35: 528-532[57] Querd A, A-Dumont C, Normand B, et al. Reactivity of CoCrMo alloy in physiological medium: Electrochemical characterization of the metal/protein interface [J]. Electrochem. Acta, 2008,53:4461-4469[58] Yan Y, Neville A, Dowson D. Biotribocorrosion of CoCrMo orthopaedic implant materials-Assessing the formation and effect of the biofilm [J]. Tribol. Int., 2007, 40: 1492-1499[59] Yan Y, Neville A, Dowson D. Tribo-corrosion properties of cobalt-based medical implant alloys in simulated biological environments [J]. Wear, 2007, 263: 1105-1111[60] Sun D, Wharton J A, Wood R J K, et al. Microabrason-corrosion of cast CoCrMo alloy in simulated body fluids [J]. Tribol. Int., 2009, 42: 99-110[61] Witte F, Fischer J, Nellesen J, et al. In vitro and in vivo corrosion measurement of magnesium alloys [J]. Biomaterials, 2006,27: 1013-1018[62] Yamamoto A, Hiromoto S. Effect of inorganic salts, amino acids and proteins on the degradation of pure magnesium in vitro [J]. Mater. Sci. Eng., 2009, C 29: 1559-1568[63] Liu C L, Xin Y C, Tian X B, et al. Degradation susceptibility of surgical magnesium alloy in artificial albumin-containing biological fluid [J]. J. Mater. Res., 2007, 22: 1806-1814[64] Rettig R, Virtanen S.Time-dependent electrochemical characterization of the corrosion of a magnesium rare-earth alloy in simulated body fluids [J]. J.Biomed. Mater. Res., 2008, 85(1): 167-175[65] Rettig R, Virtanen S. Composition of corrosion layers on a magnesium rare-earth alloy in simulated body fluids [J]. J. Biomed. Mater. Res., 2009, 88(2): 359-369[66] Zhu J J, Xu N X. Study of corrosion behavior for copper in simulated uterine fluid in the presence of proteins [D]. Shanghai: Institute of Metallurgy, Academy of Sciences of China, 2000 (朱建军,徐乃欣. 铜在含有蛋白质的模拟宫腔中的腐蚀行为研究 [D].上海:中国科学院冶金研究所,2000)[67] Pinto E M, Soares D M, Brett C M A. Interaction of BSA protein with copper evaluated by electrochemical impedance spectroscopy and quartz crystal microbalance [J]. Electrochim. Acta, 2008,53: 7460-7466[68] Pinto E M, Soares D M, Brett C M A. Influence of ultrasound irradiation on the adsorption of bovine serum albumin on copper [J]. J.Appl. Electrochem., 2007, 37: 1367-1373 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|