Please wait a minute...
中国腐蚀与防护学报  2011, Vol. 31 Issue (1): 10-17    
  综述 本期目录 | 过刊浏览 |
蛋白质作用下医用金属材料的腐蚀行为研究进展
刘成龙1,王猛1,张春艳1,王玥霁2,曾荣昌1,黄伟九1
1. 重庆理工大学材料科学与工程学院 重庆 400050
2. 重庆 理工大学应用技术学院 重庆 400050
PROGRESS IN CORROSION BEHAVIOR INVESTIGATION OF BIOMEDICAL METALLIC MATERIALS INFLUENCED BY PROTEINS
LIU Chenglong1, WANG Meng1, ZHANG Chunyan1, WANG Yueji2,ZENG Rongchang1, HUANG Weijiu1
1. School of Materials Science and Engineering, Chongqing University of Technology, Chongqing 400050
2. School of Applied Technology, Chongqing University of Technology,Chongqing 400050
全文: PDF(7845 KB)  
摘要: 基于蛋白质与医用金属间的吸附与螯合作用,综合评述了蛋白质作用下医用金属材料(钛及钛合金、不锈钢、钴基合金、镁合金等)腐蚀行为的研究进展,着重讨论了白蛋白、纤维蛋白原及血清影响下医用金属材料的腐蚀行为及机理,并指出了目前研究中存在的科学问题与未来研究的发展方向。
关键词
生物材料
蛋白质腐蚀不锈钢钛合金钴基合金    
Abstract:Based on the adsorption and chelation effects between proteins and biomedical metals, this review focuses its attention mainly on the impact of proteins on the corrosion behavior of biomedical metal materials, such as titanium & titanium alloys, stainless steels, cobalt-based alloys, magnesium alloys, and so on. The paper mainly discusses the corrosion behavior and mechanism of biomedical metals affected by albumin, fibrinogen, and serum. Some scientific issues in the present studies and the future research directions are pointed out.
Key wordsbiomaterials    protein    corrosion    stainless steel    Ti-based alloy    Co-based alloy
收稿日期: 2009-12-25     
ZTFLH: 

TG172.7

 
基金资助:

国家自然科学基金项目(31000430)、重庆市自然科学基金项目(CSTC-2008BB4062,2010BB4308)、重庆市教委科学技术研究项目(KJ080615)及重庆市杰出青年科学基金项目(CSTC-2008BA4037)资助

通讯作者: 刘成龙,黄伟九      E-mail: liuchenglong@cqut.edu.cn;huangweijiu@cqut.edu.cn
Corresponding author: LIU Chenglong,HUANG Weijiu     E-mail: liuchenglong@cqut.edu.cn;huangweijiu@cqut.edu.cn
作者简介: 刘成龙,男,1976年生,博士,副教授,研究方向为生物医用材料

引用本文:

刘成龙,王猛,张春艳,王玥霁,曾荣昌,黄伟九. 蛋白质作用下医用金属材料的腐蚀行为研究进展[J]. 中国腐蚀与防护学报, 2011, 31(1): 10-17.
LIU Cheng-Long, ZHANG Xin-Meng. PROGRESS IN CORROSION BEHAVIOR INVESTIGATION OF BIOMEDICAL METALLIC MATERIALS INFLUENCED BY PROTEINS. J Chin Soc Corr Pro, 2011, 31(1): 10-17.

链接本文:

https://www.jcscp.org/CN/      或      https://www.jcscp.org/CN/Y2011/V31/I1/10

[1] Li S P. Introduction of Biomedical Materials [M]. Wuhan: Wuhan University of Technology Press, 2000: 52-55

    (李世普. 生物医用材料导论 [M]. 武汉: 武汉工业大学出版社,2000:52-55)

[2] Cui F Z, Feng Q L. Biomaterials Science [M]. Beijing: Tsinghua University Press, 2004: 8-10

    (崔福斋,冯庆玲. 生物材料学 [M]. 北京: 清华大学出版社,2004: 8-10)

[3] Mudali U K, Sridhar T M, Raj B. Corrosion of bioimplants [J].Sadhana, 2003, 28: 601-637

[4] Yan H H, Zhao S F, Chen G F. Review of the absorption mechanism for proteins on metal surfaces [J]. Chin. J. Oral Implantol., 1997,2(4): 189-193

    (严洪海,赵士芳,陈关福. 金属表面的蛋白吸附的机理研究现状 [J]. 中国口腔种植学杂志,1997,2(4): 189-193)

[5] Li G C, Zhu S F, Yang P, et al. Investigation of protein adsorption by quartz crystal microbalance [J]. Sens. World, 2007,12: 6-10

    (李贵才,朱生发,杨苹等. 石英晶体微天平在蛋白吸附领域的研究进展 [J]. 传感器世界,2007, 12: 6-10)

[6] Yan H H, Zhao S F, Chen G F. Research methods for protein absorption on the surface of biomedical metal materials [J]. Chin.J. Oral Implantol., 1998, 3(2): 89-92

    (严洪海,赵士芳,陈关福. 金属生物材料表面的蛋白吸附的研究方法 [J]. 中国口腔种植学杂志,1998,3(2): 89-92)

[7] Zhong B, Zhang H. Evolution of theoretical study on protein adsorption on solid substrates [J]. J. Shenyang Normal Univ. (Nat.Sci.), 2006, 24(2): 158-160

    (钟博,张辉. 固体表面蛋白质吸附理论研究进展 [J]. 沈阳师范大学学报, 2006, 24(2):158-160)

[8] Haynes C A, Norde W. Globular proteins at solid/liquid interfaces [J]. Coll. Surf. B: Biointerfaces, 1994; 2: 517-566

[9] Baier R. Conditioning surface to suit the biomedical environment recent progress [J]. J. Biomech. Eng., 1982, 104: 257-271

[10] Arnebrant T, Ivarsson B, Larsson K, et al. Bilayer formation at adsorption of proteins from aqueous solutions on metal surfaces [J].Prog. Colloid Polym. Sci., 1985, 70: 62-66

[11] Li Y, Cheng R S. Development of studying for protein adsorption on the solid surface [J]. Chin. Polym. Bull., 2007, 3: 41-49

     (李艺,程镕时. 蛋白质在固体表面吸附的研究进展 [J]. 高分子通报, 2007,3: 41-49)

[12] Serro A, Fernandes A C, Saramago B, et al. Bovine serum albumin adsorption on titania surfaces and its relation to wettability aspects [J]. J. Biomed. Mater. Res., 1999, 46: 376-381

[13] Zhou H, Huo D Q. Study of adsorption and competitive adsorption of plasma proteins onto the surfaces of biomaterial [D]. Chongqing:Chongqing University, 2007

     (周浩,霍丹群. 血浆蛋白质在生物材料表面的吸附和竞争吸附 [D]. 重庆:重庆大学, 2007)

[14] Kang C K, Lee Y S. The surface modification of stainless steel and the correlation between the surface properties and protein adsorption [J]. J. Mater. Sci.: Mater. Med., 2007, 18: 1389-1398

[15] Krajewski A, Piancastelli A, Malavolti R. Albumin adhesion on ceramics and correlation with their Z-potential [J]. Biomaterials,1998, 19: 637-641

[16] Huang J, Le Y L, Zheng C Q. Vorman effect of plasma protein adsorption to biomaterials surfaces [J]. J. Biomed.Eng., 1999, 66(3): 371-376

     (黄嘉,乐以伦,郑昌琼. 血浆蛋白质在生物材料表面吸附时的Vorman效应 [J]. 生物医学工程学杂志, 1999, 66(3): 371-376)

[17] Norde W, Lyklema J. Why proteins prefer interfaces [J]. J.Biomater. Sci. Polym., 1991, 2: 183-202

[18] Willams R L, Willams D F. Albumin adsorption on metal surface [J].Biomaterials, 1988, 9: 206-212

[19] Klinger A, Steinberg D, Kohavi M N. Mechanism of adsorption of human albumin to titanium in vitro [J]. J. Biomed.Mater. Res., 1997, 36: 387-392

[20] Clark G C F, Williams D F. The effects of proteins on metallic corrosion [J]. Biomed. Mater.Res., 1982, 16: 125-134

[21] Contu F, Elsener B, Bohni H.Characterization of implant materials in fetal bovine serum and sodium sulfate by electrochemical impedance spectroscopy. I.Mechanically polished samples [J]. J. Biomed. Mater. Res.,2002, 62: 412-421

[22] Okazaki Y, Tateishi T, Ito Y. Corrosion resistance of implant alloys in pseudo physiological solution and role of alloying elements in passive films [J]. Mater. Trans., 1997,38: 78-84

[23] Williams R L, Brown S A, Merritt K. Electrochemical studies on the influence of proteins on the corrosion of implant alloys [J]. Biomaterials, 1988, 9: 181-186

[24] Sousa S R, Barbosa M A. Corrosion resistance of titanium CP in saline physiological solutions with calcium phosphate and proteins [J]. Clin. Mater.,1993, 14: 287-294

[25] Speck K M, Fraker A C. Anodic polarization behavior of Ti-Ni and Ti-6AI-4V in simulated physiological solutions [J]. J. Dent. Res., 1980, 59: 1590-1595

[26] Rondelli G, Torricelli P, Fini M, et al. In vitro corrosion study by EIS of an equiatomic NiTi alloy and an implant quality AISI 316 stainless steel [J]. J.Biomed. Mater. Res. Part B: Appl. Biomat., 2006, 79B: 320-324

[27] Cheng X L, Sharon G R. Corrosion behavior of titanium in the presence of calcium phosphate and serum proteins [J]. Biomaterials,2005, 26: 7350-7356

[28] Hanawa T, Kohayama Y, Hiromoto S, et al.Effects of biological factors on the repassivation current of titanium [J]. Mater. Trans., 2004, 45: 1635-1639

[29] Khan M A, Williams R L, Williams D F. The corrosion behavior of Ti6Al4V, Ti6Al7Nb and Ti13Nb13Zr in protein solutions [J].Biomaterials, 1999, 20: 631-637

[30] Querd A, A-Dumont C, Normand B, et al. Reactivity of titanium in physiological medium [J]. J. Electrochem. Soc., 2007,154: C593-C601

[31] Lima J, Sousa S R, Ferreira A, et al.Interactions between calcium, phosphate, and albumin on the surface of titanium [J]. J. Biomed. Mater. Res., 2001, 55: 45-53

[32] Lewis A C, Heard P J. The effect of calcium phosphate deposition upon corrosion of CoCr alloys and the potential for implant failure [J].J. Biomed. Mater. Res., 2005, 75A: 365-373

[33] Takemoto S, Hattori M, Yoshinari M, et al. Corrosion behavior and surface characterization of titanium in solution containing fluoride and albumin [J]. Biomaterials, 2005, 26: 829-837

[34] Ide K, Hattori M,Hasegawa K, et al. The effect of fluoride and albumin on corrosion of titanium [J]. J. Dent. Res., 2001, 80: 663-670

[35] Ide K, Hattori M, Yoshinari M, et al. The influence of albumin on corrosion resistance of titanium in fluoride solution [J]. J. Dent.Mater, 2003, 22(3): 359-70

[36] Huang H H. Effect of fluoride and albumin concentration on the corrosion behavior of Ti-6Al-4V alloy [J].Biomaterials, 2003, 24: 275-282

[37] Khan M A, Williams R L, Williams D F. Conjoint corrosion and wear in titanium alloys [J]. Biomaterials, 1999, 20: 765-772

[38] Brown S A, Merritt K, Fraker A C, et al. Second Symposium of Corrosion and Degradation of Implant Materials [C]. Philadelphia, 1985: 105-116

[39] Contu F, Elsener,Bohni H. A study of the potentials achieved during mechanical abrasion and the repassivation rate of titanium and Ti6Al4V in inorganic buffer solutions and bovine serum [J]. Electrochim. Acta,2004, 50: 33-41

[40] Hiromoto S, Mischler S. The influence of proteins on the fretting-corrosion behavior of a Ti6Al4V alloy [J].Wear, 2006, 261: 1002-1011

[41] Kocijan A, Milosev I. The influence of complexing agent and proteins on the corrosion of stainless and their metal components [J]. J. Mater. Sci.: Mater. Med., 2003, 14: 69-77

[42] Tang Y C, Katsuma S, Fujimoto S, et al. Electrochemical study of type 304 and 316 stainless steels in simulated body fluids and cell cultures [J]. Electrochim. Acta, 2006, 2: 709-715

[43] Sousa S R, Barbosa M A. Electrochemistry of AISI 316L stainless steel in calcium phosphate and protein solutions [J]. J. Mater.Sci.: Mater. Med., 1991, 2: 19-26

[44] Brown S A, Merritt K.Electrochemical corrosion in saline and serum [J]. J. Biomed. Mater.Res., 1980, 14, 173-175

[45] Valero V C, Igual M A. Electrochemical characterization of biomedical alloys for surgical implants in simulated body fluids [J]. Corros. Sci., 2008, 50: 1954-1961

[46] Omanovic S, Roscoe S. Electrochemical studies of the adsorption behavior of bovine serum albumin on stainless steel [J]. Langmuir,1999, 15: 8315-8321

[47] Guo L, Liang C H, Guo H X, et al. Effect of fibrinogen on corrosion behavior of stainless steel in artificial blood solution [J]. J. Biomed. Eng., 2001, 18(4): 565-567

     (郭亮,梁成浩,郭海霞等. 纤维蛋白原对模拟人工体液中不锈钢腐蚀行为的影响 [J]. 生物医学工程学杂志, 2001, 18(4): 565-567)

[48] Frateur I, Lartundo-R L, Methivier C, et al. Influence of bovine serum albumin in sulphuric acid aqueous solution on the corrosion and the passivation of an iron-chromium [J]. Electrochim.Acta, 2006, 51: 1550-1557

[49] Hsu H M, Buchanan R A. Serum concentration effects on the biocorrosion of surgical stainless steel [J]. Trans. Soc. Biomat.,1984, 7: 128-132

[50] Rondelli G, Torricelli P, Fini M. et al. In vitro corrosion study by EIS of a nickel-free stainless steel for orthopaedic applications [J]. Biomaterials, 2005, 26: 739-744

[51] Singh R, Dahotre N B. Corrosion degradation and prevention by surface modification of biometallic materials [J]. J. Mater. Sci.:Mater. Med., 2007, 18: 725-751

[52] Badawy W A, Al-Kharafi F M, Al-Ajimi J R. Electrochemical behavior of cobalt in aqueous solutions of different pH [J]. J. Appl. Electrochem., 2000, 30: 693-704

[53] Milosev I, Strehblow H H. The composition of the surface passive film formed on CoCrMo alloy in simulated physiological solution [J]. Electrochim. Acta, 2003, 48: 2767-2774

[54] Lewis A C, Kilburn M R, Allen G C, et al. Effect of synovial fluid, phosphate-buffered saline solution, and water on the dissolution and corrosion properties of CoCrMo alloys as used in orthopedic implants [J]. J. Biomed. Mater. Res., 2005, 73A: 456-467

[55] Hallab N J, Skipor A, Jacobs J J. Interfacial kinetics of titanium- and cobalt-based implant alloys in human serum: Metal release and biofilm formation [J]. J. Biomed. Mater. Res., 2003,65A: 311-318

[56] Liang C H, Guo H X, Zheng R F. The effect of fibrinogen on the corrosion behavior of CoCrNi alloys in PBS simulated body fluid [J]. Rare Met. Mater. Eng., 2006, 35: 528-532

[57] Querd A, A-Dumont C, Normand B, et al. Reactivity of CoCrMo alloy in physiological medium: Electrochemical characterization of the metal/protein interface [J]. Electrochem. Acta, 2008,53:4461-4469

[58] Yan Y, Neville A, Dowson D. Biotribocorrosion of CoCrMo orthopaedic implant materials-Assessing the formation and effect of the biofilm [J]. Tribol. Int., 2007, 40: 1492-1499

[59] Yan Y, Neville A, Dowson D. Tribo-corrosion properties of cobalt-based medical implant alloys in simulated biological environments [J]. Wear, 2007, 263: 1105-1111

[60] Sun D, Wharton J A, Wood R J K, et al. Microabrason-corrosion of cast CoCrMo alloy in simulated body fluids [J]. Tribol. Int., 2009, 42: 99-110

[61] Witte F, Fischer J, Nellesen J, et al. In vitro and in vivo corrosion measurement of magnesium alloys [J]. Biomaterials, 2006,27: 1013-1018

[62] Yamamoto A, Hiromoto S. Effect of inorganic salts, amino acids and proteins on the degradation of pure magnesium in vitro [J]. Mater. Sci. Eng., 2009, C 29: 1559-1568

[63] Liu C L, Xin Y C, Tian X B, et al. Degradation susceptibility of surgical magnesium alloy in artificial albumin-containing biological fluid [J]. J. Mater. Res., 2007, 22: 1806-1814

[64] Rettig R, Virtanen S.Time-dependent electrochemical characterization of the corrosion of a magnesium rare-earth alloy in simulated body fluids [J]. J.Biomed. Mater. Res., 2008, 85(1): 167-175

[65] Rettig R, Virtanen S. Composition of corrosion layers on a magnesium rare-earth alloy in simulated body fluids [J]. J. Biomed. Mater. Res., 2009, 88(2): 359-369

[66] Zhu J J, Xu N X. Study of corrosion behavior for copper in simulated uterine fluid in the presence of proteins [D]. Shanghai: Institute of Metallurgy, Academy of Sciences of China, 2000

     (朱建军,徐乃欣. 铜在含有蛋白质的模拟宫腔中的腐蚀行为研究 [D].上海:中国科学院冶金研究所,2000)

[67] Pinto E M, Soares D M, Brett C M A. Interaction of BSA protein with copper evaluated by electrochemical impedance spectroscopy and quartz crystal microbalance [J]. Electrochim. Acta, 2008,53: 7460-7466

[68] Pinto E M, Soares D M, Brett C M A. Influence of ultrasound irradiation on the adsorption of bovine serum albumin on copper [J]. J.Appl. Electrochem., 2007, 37: 1367-1373
[1] 董续成, 管方, 徐利婷, 段继周, 侯保荣. 海洋环境硫酸盐还原菌对金属材料腐蚀机理的研究进展[J]. 中国腐蚀与防护学报, 2021, 41(1): 1-12.
[2] 唐荣茂, 朱亦晨, 刘光明, 刘永强, 刘欣, 裴锋. Q235钢/导电混凝土在3种典型土壤环境中腐蚀的灰色关联度分析[J]. 中国腐蚀与防护学报, 2021, 41(1): 110-116.
[3] 韩月桐, 张鹏超, 史杰夫, 李婷, 孙俊才. 质子交换膜燃料电池中TA1双极板的表面改性研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 125-130.
[4] 张雨轩, 陈翠颖, 刘宏伟, 李伟华. 铝合金霉菌腐蚀研究进展[J]. 中国腐蚀与防护学报, 2021, 41(1): 13-21.
[5] 冉斗, 孟惠民, 刘星, 李全德, 巩秀芳, 倪荣, 姜英, 龚显龙, 戴君, 隆彬. pH对14Cr12Ni3WMoV不锈钢在含氯溶液中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2021, 41(1): 51-59.
[6] 左勇, 曹明鹏, 申淼, 杨新梅. MgCl2-NaCl-KCl熔盐体系中金属Mg对316H不锈钢的缓蚀性能研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 80-86.
[7] 王欣彤, 陈旭, 韩镇泽, 李承媛, 王岐山. 硫酸盐还原菌作用下2205双相不锈钢在3.5%NaCl溶液中应力腐蚀开裂行为研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 43-50.
[8] 史昆玉, 吴伟进, 张毅, 万毅, 于传浩. TC4表面沉积Nb涂层在模拟体液环境下的电化学性能研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 71-79.
[9] 郑黎, 王美婷, 于宝义. 镁合金表面冷喷涂技术研究进展[J]. 中国腐蚀与防护学报, 2021, 41(1): 22-28.
[10] 于宏飞, 邵博, 张悦, 杨延格. 2A12铝合金锆基转化膜的制备及性能研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 101-109.
[11] 张浩, 杜楠, 周文杰, 王帅星, 赵晴. 模拟海水溶液中Fe3+对不锈钢点蚀的影响[J]. 中国腐蚀与防护学报, 2020, 40(6): 517-522.
[12] 贾世超, 高佳祺, 郭浩, 王超, 陈杨杨, 李旗, 田一梅. 再生水水质因素对铸铁管道的腐蚀研究[J]. 中国腐蚀与防护学报, 2020, 40(6): 569-576.
[13] 赵鹏雄, 武玮, 淡勇. 空间分辨技术在金属腐蚀原位监测中的应用[J]. 中国腐蚀与防护学报, 2020, 40(6): 495-507.
[14] 马鸣蔚, 赵志浩, 荆思文, 于文峰, 谷义恩, 王旭, 吴明. 17-4 PH不锈钢在含SRB的模拟海水中的应力腐蚀开裂行为研究[J]. 中国腐蚀与防护学报, 2020, 40(6): 523-528.
[15] 岳亮亮, 马保吉. 超声表面滚压对AZ31B镁合金腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2020, 40(6): 560-568.