Please wait a minute...
中国腐蚀与防护学报  2010, Vol. 30 Issue (5): 396-402    
  研究报告 本期目录 | 过刊浏览 |
酸性盐雾下2024铝合金搅拌摩擦焊接头的腐蚀行为
付瑞东1,2,何淼3,栾国红3,董春林3,康举2
1. 燕山大学亚稳材料制备技术与科学国家重点实验室 秦皇岛 066004
2. 燕山大学材料科学与工程学院 秦皇岛 066004
3. 北京赛福斯特技术有限公司中国搅拌摩擦焊中心 北京 100024
CORROSION BEHAVIOR OF FRICTION STIR WELDED JOINT OF 2024 ALUMINUM ALLOYS UNDER ACID SALT SPRAYING
FU Ruidong1,2, HE Miao3, LUAN Guohong3, DONG Chunlin3,KANG Ju2
1. Yanshan University, State Key Laboratory of Metastable Materials Science and Technology, Qinhuangdao 066004
2. College of Materials Science and Engineering, Yanshan University, Qinhuangdao 066004
3. China FSW Center Beijing FSW Technology Limited Company, Beijing 100024
全文: PDF(5179 KB)  
摘要: 在详细分析2024铝合金搅拌摩擦焊焊缝表面微结构的基础上,采用酸性连续盐雾试验研究焊缝表面的腐蚀行为。组织分析表明,焊缝表层因受搅拌头轴肩水平挤压作用而呈现弧形条纹特征,并导致晶粒和第二相粒子得到显著细化;合金中的第二相粒子主要为棒状的Al2CuMg(S相)和颗粒状的CuAl2θ相)。盐雾试验表明,搅拌摩擦焊焊缝区耐蚀性因包铝层遭到破坏而呈现下降趋势,腐蚀程度因焊缝表面残留的纯铝而呈现不均匀性。腐蚀首先从局部点蚀开始,最终演变为剥落腐蚀。
关键词 2024铝合金搅拌摩擦焊组织盐雾试验腐蚀    
Abstract:The microstructures of friction stir welded (FSW) joint of 2024 aluminum alloy were examined by using optical microscope and transmission electron microscope. The corrosion behaviors of the joint were investigated by method of acid salt spray. The analysis results of microstructure show that the arc stripe is the main feature on the surface of the weld seam due to the extrusion action of the shoulder of the stir tool. The grain and second phase particles are also refined. The second phase particles are mainly composed of Al2CuMg(S phase) and CuAl2(θ phase). The corrosion test shows that the resistance to corrosion of FSW seam is lower than that of base metal pure aluminum layer. There exists an unevenness for the corrosion of the FSW seam. The corrosion initially results from pitting corrosion and finally develops to exfoliation.
Key words2024 aluminum alloy    friction stir welding    microstructure    salt spray test    corrosion
收稿日期: 2009-04-20     
ZTFLH: 

TG178

 
基金资助:

航空科学重点基金项目(2009ZE25007)

通讯作者: 付瑞东     E-mail: rdfu@ysu.edu.cn
Corresponding author: RuiDong Fu     E-mail: rdfu@ysu.edu.cn
作者简介: 付瑞东,男,博士,教授,研究方向为搅拌摩擦焊接及加工,金属材料强韧化技术

引用本文:

付瑞东,何淼,栾国红,董春林,康举. 酸性盐雾下2024铝合金搅拌摩擦焊接头的腐蚀行为[J]. 中国腐蚀与防护学报, 2010, 30(5): 396-402.
FU Rui-Dong. CORROSION BEHAVIOR OF FRICTION STIR WELDED JOINT OF 2024 ALUMINUM ALLOYS UNDER ACID SALT SPRAYING. J Chin Soc Corr Pro, 2010, 30(5): 396-402.

链接本文:

https://www.jcscp.org/CN/      或      https://www.jcscp.org/CN/Y2010/V30/I5/396

[1] Matrukanitz R P. Selection and weldability of heat-treatable aluminum alloys, ASM Handbook-Welding, Brazing and Soldering 6 [M]. ASM Int., 1990: 528-536 [2] Thomas W M, Nicholas E D, Needham J C, et al. Friction stir butt welding [P]. Int. Pat.,PCT/GB92/02203, 1991, 9 [3] Thomas W M, Nicholas E D. Friction stir welding for the transportation industries [J]. Mater. Des., 1997, 18(4-6): 269-273 [4] Ericsson M, Sandstrom R. Influence of welding speed on the fatigue of friction stir welds and comparison with MIG and TIG [J]. Int. J. Fatigue, 2003, 25: 1379-1387 [5] Balasubramanian V, Lakshminarayanan A K. The mechanical properties of the GMAW, GTAW and FSW joints of the RDE-40 aluminum alloy [J].Int. J. Microstruct. Mater. Prop., 2008, 3(6): 837-853 [6] Su J Q, Nelson T W, Mishra R, et al. Microstructural investigation of friction stir welded 7050-T651 aluminium [J].Acta Mater., 2003, 51(3): 713-729 [7] Litynska L, Braun R, Staniek G, et al. TEM study of the microstructure evolution in a friction stir-welded AlCuMgAg alloy [J]. Mater. Chem. Phys., 2003, 81: 293-295 [8] Yang B S, Yan J H, Michael S A, et al. Banded microstructure in AA2024-T351 and AA2524-T351 aluminum friction stir welds.Part I. Metallurgical studies [J]. Mater. Sci. Eng., 2004,A364(1-2): 55-65 [9] Michael S A, Yang B S, Anthony R P, et al. Banded microstructure in 2024-T351 and 2524-T351 aluminum friction stir welds. Part II. Mechanical characterization [J]. Mater.Sci. Eng., 2004, A364(1-2): 66-74 [10] Cavaliere P, Cerri E, Squillace A. Mechanical response of 2024-7075 aluminium alloys joined by friction stir welding [J]. J. Mater. Sci., 2005, 40(14): 3669-3676 [11] Omar H. Effects of peening on mechanical properties in friction stir welded 2195 aluminum alloy joints [J]. Mater. Sci. Eng., 2008,A492(1-2): 168-176 [12] Staron P, Kocak M, Williams S. Residual stresses in friction stir welded Al sheets [J]. Appl. Phys. A: Mater. Sci. Process, 2002, 74: 1161-1162 [13] Michael B P, Thomas G H, Baumann J A, et al. Residual stress measurements in a thick, dissimilar aluminum alloy friction stir weld [J]. Acta Mater., 2006, 54(15): 4013-4021 [14] Linton V M, Ripley M I.Influence of time on residual stresses in friction stir welds in age-hardenable 7xxx aluminium alloys [J]. Acta Mater., 2008, 56(16):4319-4327 [15] Li Y, Murr L E, McClure J C. Solid-state flow visualization in the friction-stir welding of 2024 Al to 6061 Al [J]. Sci. Mater., 1999, 40(9) : 1041-1046 [16] Colligan K. Material flow behavior during friction stir welding of aluminum [J]. Weld. J., 1999, 78(7): 229-237 [17] Song M, Kovacevic R. Thermal modeling of friction stir welding in a moving coordinate system and its validation [J]. Mach Tools Manuf., 2003, 43: 605-615 [18] Lu S X, Yan J C, Li W G, et al. Simulation on temperature field of friction stir welded joints of 2024-T4 Al [J]. Acta Metall.Sin. 2005, 18(4): 552-556 [19] Kamp N, Sullivan A, Robson J D.Modelling of friction stir welding of 7xxx aluminium alloys [J].Mater. Sci. Eng., 2007, A466(1-2): 246-255 [20] Li J F, Zheng Z J, Ren W D. Function mechanism of secondary phase on localized corrosion of aluminum alloy [J]. Mater. Rev.,2005, 19(2): 81-90      (李劲风, 郑子樵, 任文达. 第二相在铝合金局部腐蚀中的作用机制 [J].材料导报. 2005, 19(2): 81-90) [21] Wang Z Y, Ma T, Han W, et al.Corrosion behavior on aluminum alloy LY12 in simulated atmospheric corrosion process [J]. Trans. Nonferrous Met. Soc. China, 2007, l7:326-334 [22] Sun B D, Li K. Present research situation and development trend of corrosion protection treatment of aluminum and alloy [J]. Corros. Prot., 1998, 19(5): 195-197      (孙宝德, 李克. 铝及铝合金防腐蚀表面技术的研究现状与发展 [J]. 腐蚀与防护. 1998, 19(5): 195-197) [23] Geng X W, Zhu L J, He C L. Development of research on corrosion behaviors of friction stir weld [J]. Mater.Rev., 2007, 21(11): 252-255      (耿学文, 朱丽娟, 贺春林. 搅拌摩擦焊焊缝腐蚀研究进展 [J]. 材料导报. 2007, 21(11): 252-255) [24] Davenport A J, Ambat R, Jariyaboon M, et al. Corrosion of friction stir welds in aerospace alloys [J]. Proc.Electrochem. Soc.,2003, 23: 403-412 [25] Jariyaboon M, Davenport A J, Ambat R, et al. The effect of welding parameters on the corrosion behaviour of friction stir welded AA2024-T351 [J]. Corros. Sci., 2007, 49(2):877-909 [26] Biallas G, Braun R, Donne C D, et al. Mechanical properties and corrosion behavior of friction stir welded 2024-T3 [C]. 1st International Symposium on Friction Stir Welding, Thousand Oaks, CA, 1999 [27] Paglia C S, Carroll M C, Pitts B C, et al. Strength, corrosion, and environmentally assisted cracking of a 7075-T6 friction stir weld [J]. Mater. Sci. Forum, 2002, 396-402(3): 1677-1684 [28] Buchheit R G, Paglia C S. Localized corrosion and stress corrosion cracking of friction stir welded 7075 and 7050 [J]. Proc. Electrochem. Soc., 2003, 23: 94-103
[1] 郑黎, 王美婷, 于宝义. 镁合金表面冷喷涂技术研究进展[J]. 中国腐蚀与防护学报, 2021, 41(1): 22-28.
[2] 于宏飞, 邵博, 张悦, 杨延格. 2A12铝合金锆基转化膜的制备及性能研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 101-109.
[3] 董续成, 管方, 徐利婷, 段继周, 侯保荣. 海洋环境硫酸盐还原菌对金属材料腐蚀机理的研究进展[J]. 中国腐蚀与防护学报, 2021, 41(1): 1-12.
[4] 唐荣茂, 朱亦晨, 刘光明, 刘永强, 刘欣, 裴锋. Q235钢/导电混凝土在3种典型土壤环境中腐蚀的灰色关联度分析[J]. 中国腐蚀与防护学报, 2021, 41(1): 110-116.
[5] 韩月桐, 张鹏超, 史杰夫, 李婷, 孙俊才. 质子交换膜燃料电池中TA1双极板的表面改性研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 125-130.
[6] 张雨轩, 陈翠颖, 刘宏伟, 李伟华. 铝合金霉菌腐蚀研究进展[J]. 中国腐蚀与防护学报, 2021, 41(1): 13-21.
[7] 冉斗, 孟惠民, 刘星, 李全德, 巩秀芳, 倪荣, 姜英, 龚显龙, 戴君, 隆彬. pH对14Cr12Ni3WMoV不锈钢在含氯溶液中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2021, 41(1): 51-59.
[8] 左勇, 曹明鹏, 申淼, 杨新梅. MgCl2-NaCl-KCl熔盐体系中金属Mg对316H不锈钢的缓蚀性能研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 80-86.
[9] 王欣彤, 陈旭, 韩镇泽, 李承媛, 王岐山. 硫酸盐还原菌作用下2205双相不锈钢在3.5%NaCl溶液中应力腐蚀开裂行为研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 43-50.
[10] 史昆玉, 吴伟进, 张毅, 万毅, 于传浩. TC4表面沉积Nb涂层在模拟体液环境下的电化学性能研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 71-79.
[11] 贾世超, 高佳祺, 郭浩, 王超, 陈杨杨, 李旗, 田一梅. 再生水水质因素对铸铁管道的腐蚀研究[J]. 中国腐蚀与防护学报, 2020, 40(6): 569-576.
[12] 赵鹏雄, 武玮, 淡勇. 空间分辨技术在金属腐蚀原位监测中的应用[J]. 中国腐蚀与防护学报, 2020, 40(6): 495-507.
[13] 马鸣蔚, 赵志浩, 荆思文, 于文峰, 谷义恩, 王旭, 吴明. 17-4 PH不锈钢在含SRB的模拟海水中的应力腐蚀开裂行为研究[J]. 中国腐蚀与防护学报, 2020, 40(6): 523-528.
[14] 岳亮亮, 马保吉. 超声表面滚压对AZ31B镁合金腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2020, 40(6): 560-568.
[15] 艾芳芳, 陈义庆, 钟彬, 李琳, 高鹏, 伞宏宇, 苏显栋. T95油井管在酸性油气田环境中的应力腐蚀开裂行为及机制[J]. 中国腐蚀与防护学报, 2020, 40(5): 469-473.