Please wait a minute...
中国腐蚀与防护学报  2009, Vol. 29 Issue (6): 415-420    
  研究报告 本期目录 | 过刊浏览 |
静水压力对Fe-20Cr合金点蚀行为的影响
杨延格1;崔中雨1;陈杰1;曹靖涛1;张涛1;2;邵亚薇1;2;孟国哲1;2;王福会1;2
1. 哈尔滨工程大学材料科学与化学工程学院腐蚀与防护实验室 哈尔滨 150001
2. 中国科学院金属研究所金属腐蚀与防护国家重点实验室 沈阳 110016
INFLUENCE OF HYDROSTATIC PRESSURE ON THE PITTING BEHAVIOR OF Fe-20Cr Alloy
YANG Yange1; CUIZhongyu1; CHEN Jie1; CAO Jingtao1; ZHANG Tao1;2; SHAO Yawei1;2; MENG Guozhe1;2; WANG Fuhui1;2
1. Corrosion and Protection Laboratory; College of Material Science and Chemical Engineering;Harbin Engineering University; Harbin 150001
2. State Key Laboratory for Corrosion and Protection;Institute of Metal Research; Chinese Academy of Sciences; Shenyang 110016
全文: PDF(921 KB)  
摘要: 

基于统计学方法和随机理论,利用动电位极化曲线和恒电位测试技术研究静水压力对Fe-20Cr合金点蚀行为的影响。随着静水压力的增加, Fe-20Cr合金的击破电位降低,维钝电流密度减小,耐蚀性能变差。静水压力对Fe-20Cr合金点蚀产生和点蚀生长的研究表明:高的静水压力下,亚稳态点蚀发生的频率加快且向稳态点蚀发展的倾向增大,从而导致点蚀的产生速度加快,点蚀的孕育期缩短,但点蚀的产生机制并没有发生改变;静水压力的增加增大了点蚀的生长概率,高压下产生的点蚀更容易成长为大的腐蚀坑。

关键词 静水压力腐蚀随机理论Fe-20Cr深海    
Abstract

The effect of hydrostatic pressure on pitting behavior of Fe-20Cr alloy in 3.5% NaCl solution was investigated by means of potentiodynamic polarization and potentiostatic technology. For the polarization curve measurement, the specimens were kept for 1 h in the NaCl solution at various hydrostatic pressures and then scanned in 0.333 mV/s, 3 mV/s, and 5 mV/s scan rate respectively. For the induction time measurement, the specimen was pretreated in Na2SO4 solution at a constant potential, -0.22 V, for 500 s. After pretreatment, the specimen was kept in the NaCl solution at various hydrostatic pressures, and a potentiostatic technique\linebreak(-0.22 V) was used to measure the anodic current trace. Experiment data was analyzed based on statistical and stochastic approaches. With the increasing of hydrostatic pressure, the pit corrosion resistance of Fe-20Cr alloy was deteriorated, which was distinguished by the decrease of Ecrit and the increase of passive current density.The results also showed that there were obvious effects on processes of pit initiation and pit growth of Fe-20Cr alloy: (1) the pit generation rate was evidently increased compared with that under lower hydrostatic pressure resulting from the metastable pits'  frequent initiation and increased tendency to stable pits. However, it seemed that pit generation mechanism showed no hydrostatic pressure dependence. (2) the probability of pit growth increased with the increasing of hydrostatic pressure, which implied that the metastable pit on Fe-20Cr alloy exhibited higher probability to become larger pit cavity during the same time interval than that under lower hydrostatic pressure.

Key wordshydrostatic pressure    corrosion    stochastic theory    Fe-20Cr    deep ocean
收稿日期: 2008-10-27     
ZTFLH: 

TG174.41

 
基金资助:

国家自然科学基金项目(50771038)资助

通讯作者: 杨延格     E-mail: zhangtao@hrbeu.edu.cn
Corresponding author: YANG Yange     E-mail: zhangtao@hrbeu.edu.cn
作者简介: 杨延格,男,1985年生,硕士生,研究方向为材料腐蚀与防护

引用本文:

杨延格 崔中雨 陈杰 曹靖涛 张涛 邵亚薇 孟国哲 王福会. 静水压力对Fe-20Cr合金点蚀行为的影响[J]. 中国腐蚀与防护学报, 2009, 29(6): 415-420.
YANG Yan-He. INFLUENCE OF HYDROSTATIC PRESSURE ON THE PITTING BEHAVIOR OF Fe-20Cr Alloy. J Chin Soc Corr Pro, 2009, 29(6): 415-420.

链接本文:

https://www.jcscp.org/CN/      或      https://www.jcscp.org/CN/Y2009/V29/I6/415

[1] Xu L K, Li W J, Chen G Z. Deep sea corrosion test technique [J]. Marine Sci., 2005, 29(7):1-3
(许立坤,李文军,陈光章. 深海腐蚀试验技术 [J]. 海洋科学, 2005,29(7):1-3)
[2] Guo W M, Li W J,Chen G Z. Corrosion testing in the deep ocean [J]. Equip. Env. Eng.,2006, 3(1):11-12
(郭为民,李文军,陈光章.材料深海环境腐蚀试验 [J]. 装备环境工程, 2006,3(1):11-12)
[3] Beccaria A M, Poggi G, Gingaud D, et al. Effect of hydrostatic
pressure on passivating power of corrosion layers formed on 6061 T6 aluminum alloy in sea water [J]. Br. Corros. J., 1994, 29(1): 65-69
[4] Beccaria A M, Fiordiponti P, Msttogno G. The effect of hydrostatic pressure on the corrosion of nickel in slightly alkaline solutions containing Cl-ions [J]. Corros. Sci., 1989, 29(4): 403-416
[5] Beccaria A M, Poggi G. Influence of hydrostatic pressure on pitting of aluminum in sea water [J]. Br. Corros. J., 1985, 20(4): 183-186
[6] Barous B. The kinetics of pit generation on stainless steels [J].Corros. Sci., 1988, 28(10): 969-986
[7] ShibataT. Stochastic studies of passivity breakdown [J]. Corros. Sci., 1990, 31: 413-423
[8] Gabrielli C, Huet F, Keddam M, Oltra R. A review of the probabilistic aspects of localized corrosion [J]. Corrosion.1990, 46: 266-278
[9] Salvago G, Fumagali G, Mollica A. A statistical evaluation of AISI 316 stainless steel resistance to crevice corrosion in 3.5% NaCl solution and in natural sea water after pre-treatment in HNO3 [J]. Corros.Sci., 1987, 27(9): 927-936
[10] Fujimoto S, Shibata T, Minamida M, et al. A statistical evaluation of crevice corrosion on type 304 stainless steel [J]. Corros. Sci., 1994 36(8): 1575-1583
[11] Shibata T, Yaocan Zhu. The effect of film formation potential on the stochastic processes of pit generation on anodized titanium [J].Corros. Sci., 1994, 36(1): 153-163
[12] Ilevbare G, Burstein G. Role of alloyed molybdenum in the inhibition of pitting corrosion in stainless steel [J]. Corros. Sci., 2001, 43: 485-513
[13] Burstein G, Vines S. Repetitive nucleation of  corrosion pits on stainless steel and the effects of surface roughness [J]. J. Electrochem.Soc. 2001, 148: B504-B516
[14] Burstein G, Soutob R. Improvement in pitting resistance of stainless steel surfaces by prior anodic treatment in metasilicate solution [J]. J. Electrochem. Soc., 2004, 151: B537-B542
[15] Shibata T. Statistical and stochastic approaches to localized corrosion [J]. 1996, 52(11): 813-830
[16] Moayed M H, Newman R C. Evolution of current transients and morphology of metastable pitting and stable pitting on stainless steel near the critical pitting temperature [J]. Corros. Sci., 2006, 48: 1004-1018
[17] Shibata T. Stochastic studies of passivity breakdown [J]. Corros.Sci., 1990, 31: 413-423
[18] Salvago G, Fumagalli G. Application of breakdown potential distribution in corrosion comparisons of stainless steels [J]. Corros. Sci., 1996, 52(10): 760-767
[19] Trueman Antony R. Determining the probability of stable pit initiation on aluminium alloys using potentiostatic electrochemical measurements [J]. Corros. Sci., 2005, 47: 2240-2256

[1] 郑黎, 王美婷, 于宝义. 镁合金表面冷喷涂技术研究进展[J]. 中国腐蚀与防护学报, 2021, 41(1): 22-28.
[2] 于宏飞, 邵博, 张悦, 杨延格. 2A12铝合金锆基转化膜的制备及性能研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 101-109.
[3] 董续成, 管方, 徐利婷, 段继周, 侯保荣. 海洋环境硫酸盐还原菌对金属材料腐蚀机理的研究进展[J]. 中国腐蚀与防护学报, 2021, 41(1): 1-12.
[4] 唐荣茂, 朱亦晨, 刘光明, 刘永强, 刘欣, 裴锋. Q235钢/导电混凝土在3种典型土壤环境中腐蚀的灰色关联度分析[J]. 中国腐蚀与防护学报, 2021, 41(1): 110-116.
[5] 韩月桐, 张鹏超, 史杰夫, 李婷, 孙俊才. 质子交换膜燃料电池中TA1双极板的表面改性研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 125-130.
[6] 张雨轩, 陈翠颖, 刘宏伟, 李伟华. 铝合金霉菌腐蚀研究进展[J]. 中国腐蚀与防护学报, 2021, 41(1): 13-21.
[7] 冉斗, 孟惠民, 刘星, 李全德, 巩秀芳, 倪荣, 姜英, 龚显龙, 戴君, 隆彬. pH对14Cr12Ni3WMoV不锈钢在含氯溶液中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2021, 41(1): 51-59.
[8] 左勇, 曹明鹏, 申淼, 杨新梅. MgCl2-NaCl-KCl熔盐体系中金属Mg对316H不锈钢的缓蚀性能研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 80-86.
[9] 王欣彤, 陈旭, 韩镇泽, 李承媛, 王岐山. 硫酸盐还原菌作用下2205双相不锈钢在3.5%NaCl溶液中应力腐蚀开裂行为研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 43-50.
[10] 史昆玉, 吴伟进, 张毅, 万毅, 于传浩. TC4表面沉积Nb涂层在模拟体液环境下的电化学性能研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 71-79.
[11] 孙海静, 覃明, 李琳. 深海低溶解氧环境下Al-Zn-In-Mg-Ti牺牲阳极性能研究[J]. 中国腐蚀与防护学报, 2020, 40(6): 508-516.
[12] 贾世超, 高佳祺, 郭浩, 王超, 陈杨杨, 李旗, 田一梅. 再生水水质因素对铸铁管道的腐蚀研究[J]. 中国腐蚀与防护学报, 2020, 40(6): 569-576.
[13] 赵鹏雄, 武玮, 淡勇. 空间分辨技术在金属腐蚀原位监测中的应用[J]. 中国腐蚀与防护学报, 2020, 40(6): 495-507.
[14] 马鸣蔚, 赵志浩, 荆思文, 于文峰, 谷义恩, 王旭, 吴明. 17-4 PH不锈钢在含SRB的模拟海水中的应力腐蚀开裂行为研究[J]. 中国腐蚀与防护学报, 2020, 40(6): 523-528.
[15] 岳亮亮, 马保吉. 超声表面滚压对AZ31B镁合金腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2020, 40(6): 560-568.