Please wait a minute...
中国腐蚀与防护学报  2025, Vol. 45 Issue (5): 1399-1407     CSTR: 32134.14.1005.4537.2024.365      DOI: 10.11902/1005.4537.2024.365
  研究报告 本期目录 | 过刊浏览 |
脉冲电流沉积制备混凝土用Ag/AgCl氯离子监测电极
冯兴国, 周祺艳, 何奥成, 肖唐, 屈展庆, 卢向雨()
河海大学港口海岸与近海工程学院 南京 210024
Pulsed Current Electrodeposition Preparation and Performance of Ag/AgCl Electrode as Chloride Ion Monitoring Electrodes for Concrete
FENG Xingguo, ZHOU Qiyan, HE Aocheng, XIAO Tang, QU Zhanqing, LU Xiangyu()
College of Harbour, Coastal and Offshore Engineering, Hohai University, Nanjing 210024, China
引用本文:

冯兴国, 周祺艳, 何奥成, 肖唐, 屈展庆, 卢向雨. 脉冲电流沉积制备混凝土用Ag/AgCl氯离子监测电极[J]. 中国腐蚀与防护学报, 2025, 45(5): 1399-1407.
Xingguo FENG, Qiyan ZHOU, Aocheng HE, Tang XIAO, Zhanqing QU, Xiangyu LU. Pulsed Current Electrodeposition Preparation and Performance of Ag/AgCl Electrode as Chloride Ion Monitoring Electrodes for Concrete[J]. Journal of Chinese Society for Corrosion and protection, 2025, 45(5): 1399-1407.

全文: PDF(18923 KB)   HTML
摘要: 

Ag/AgCl电极是监测混凝土中Cl-浓度的重要元件。为提高Ag/AgCl电极在混凝土环境中寿命,本文采用脉冲电流沉积制备Ag/AgCl电极,分析了电流密度、电沉积时间对混凝土环境中Ag/AgCl电极能斯特响应、抗极化性能、寿命等的影响,并将其与恒电流沉积制备的Ag/AgCl电极进行对照。研究表明相同电流密度和电量条件下,与恒电流沉积Ag/AgCl电极相比,脉冲电流沉积制备的Ag/AgCl电极在相同Cl-浓度变化时具有更宽的电位响应,更好的抗极化性能和更长寿命。脉冲电流沉积时,随着电流密度增加,制备的Ag/AgCl电极性能有所降低;小电流密度条件下延长沉积时间可提高Ag/AgCl电极性能;综合而言,在0.1 mA/cm2脉冲电流下沉积15 h制备的Ag/AgCl电极性能最佳。此外,观察了电极表面AgCl膜层微观形貌和物相组成,分析了脉冲电流改善Ag/AgCl电极性能的微观机制。

关键词 Ag/AgCl电极脉冲电流恒电流混凝土Cl-监测    
Abstract

Ag/AgCl electrode is a core component for monitoring chloride ion in concrete. In order to improve the life of Ag/AgCl electrodes, pulsed current electrodeposition was adopted to prepare Ag/AgCl electrodes. The effect of current density and electrodeposition time on the Nernst response, anti-polarization performance, and life of the Ag/AgCl electrodes were investigated in a simulated concrete pore solution. In addition, the properties of the Ag/AgCl electrodes prepared by pulsed current electrodeposition were compared to those of the counterparts produced by constant current. The results show that the former Ag/AgCl electrode has wider potential response, better anti-polarization performance, and longer life than the latter electrode, under the same current density and charge condition. The performance of Ag/AgCl electrodes decreased with the increase of pulsed current density. Under the condition of low pulsed current density, the performance of Ag/AgCl electrode can be improved by extending electrodeposition time. In general, the best performance was observed on the Ag/AgCl electrodes that prepared by electrodeposition at 0.1 mA/cm2 pulse current density for 15 h. In addition, the microstructure and the chemical composition of AgCl film on the electrode surface were characterized, and the mechanism of the improvement of performance for the Ag/AgCl electrode by the pulsed current electrodeposition was also analyzed.

Key wordsAg/AgCl electrode    pulse current    constant current    concrete    chloride ion monitoring
收稿日期: 2024-11-08      32134.14.1005.4537.2024.365
ZTFLH:  TU511  
基金资助:国家重点研发计划(2022YFB3207400)
通讯作者: 卢向雨,E-mail:luxiangyu@hhu.edu.cn,研究方向为金属表面工程,腐蚀与防护
Corresponding author: LU Xiangyu, E-mail: luxiangyu@hhu.edu.cn
作者简介: 冯兴国,男,1983年生,博士,副教授
图1  恒电流和脉冲电流电沉积过程中电流随时间的变化
Specimen No.Current modeI / mA·cm-2Time / h
C-0.1-6Constant current0.16
C-0.1-120.112
P-0.1-7.5Pulse current0.17.5
P-0.1-150.115
P-0.2-7.50.27.5
P-0.4-7.50.47.5
P-0.8-7.50.87.5
表1  电沉积制备Ag/AgCl电极的电流参数
图2  砂浆中Ag/AgCl电极的埋置示意图
图3  不同条件所制备的Ag/AgCl电极在不同Cl-浓度的模拟孔隙液中的电位-浓度图
Specimen No.SlopeR2
C-0.1-6-34.7550.99813
C-0.1-12-30.1700.99881
P-0.1-7.5-38.8010.99780
P-0.1-15-34.1640.99205
P-0.2-7.5-26.1010.98158
P-0.4-7.5-24.1000.96539
P-0.8-7.5-20.8850.66635
表2  不同条件所制备的Ag/AgCl电极在不同Cl-浓度模拟孔隙液中的Nernst曲线拟合结果
图4  不同电沉积条件下所制备Ag/AgCl电极在0.05 mol/L Cl-模拟孔隙液中的极化曲线
Specimen No.I0 / A·cm-2
C-0.1-63.7346 × 10-5
C-0.1-121.1947 × 10-4
P-0.1-7.54.6584 × 10-5
P-0.1-151.4162 × 10-4
P-0.2-7.59.2827 × 10-5
P-0.4-7.58.3663 × 10-5
P-0.8-7.57.5699 × 10-5
表3  各种所制备Ag/AgCl电极在0.05 mol/L Cl-孔隙液中交换电流密度
图5  各种所制备Ag/AgCl电极在模拟混凝土孔隙液中电位变化
图6  各种所制备的Ag/AgCl电极在砂浆中的电位变化
图7  各种所制备Ag/AgCl电极的AgCl膜层的表面形貌
图8  不同电沉积条件下所制备Ag/AgCl电极的AgCl膜层截面形貌
图9  不同条件所制备的Ag/AgCl电极表面EDS元素面扫描
Specimen No.O / %Cl / %Ag / %Cl/O ratio
C-0.1-63.05536.58860.38711.976
C-0.1-124.37538.24957.3778.7426
P-0.1-7.52.53731.44966.01412.396
P-0.1-152.04038.51759.44418.881
P-0.4-7.52.00336.01061.98717.978
表4  各种所制备Ag/AgCl电极表面元素含量 (atomic fraction)
图10  各种所制备Ag/AgCl电极表面的XRD图谱
[1] Sanchez T, Conciatori D, Laferriere F, et al. Modelling capillary effects on the reactive transport of chloride ions in cementitious materials [J]. Cem. Concr. Res., 2020, 131: 106033
[2] Xu G L, Wang C H. Research progress and discussion on the factors influencing the durability of structural concrete [J]. Mater. Rev., 2013, 27(11): 111
[2] 徐国良, 王彩辉. 结构混凝土耐久性影响因素的研究进展与探讨 [J]. 材料导报, 2013, 27(11): 111
[3] Thangavel K, Rengaswamy N S. Relationship between chloride/hydroxide ratio and corrosion rate of steel in concrete [J]. Cem. Concr. Compos., 1998, 20: 283
[4] Shi X M, Xie N, Fortune K, et al. Durability of steel reinforced concrete in chloride environments: an overview [J]. Constr. Build. Mater., 2012, 30: 125
[5] Apostolopoulos C A, Demis S, Papadakis V G. Chloride -induced corrosion of steel reinforcement–Mechanical performance and pit depth analysis [J]. Constr. Build. Mater., 2013, 38: 139
[6] Li Z J, Ding L Y, Ding Q J. Research progress of fiber optical sensor for monitoring chloride erosion in concrete [J]. Concrete, 2017, (10): 150
[6] 李智捷, 丁莉芸, 丁庆军. 用于检测混凝土氯离子侵蚀的光纤传感器的研究进展 [J]. 混凝土, 2017, (10): 150
[7] Abbas Y, Pargar F, Koleva D A, et al. Non-destructive measurement of chloride ions concentration in concrete-A comparative analysis of limitations and prospects [J]. Constr. Build. Mater., 2018, 174: 376
[8] Jin M, Jiang L H, Tao D B, et al. Characterization of Ag/AgCl electrode manufactured by immersion in sodium hypochloride acid for monitoring chloride content in concrete [J]. Constr. Build. Mater., 2016, 122: 310
[9] He L, Xu L K, Wang J T, et al. Performance of Ag/AgCl reference electrode prepared by hot dip coating method [J]. Corros. Sci. Prot. Technol., 2009, 21: 482
[9] 何 霖, 许立坤, 王均涛 等. 热浸涂银/氯化银参比电极性能研究 [J]. 腐蚀科学与防护技术, 2009, 21: 482
[10] Huang F L, Cao Q X, Wei Y G, et al. The preparation and electrochemical performance of Ag/AgCl electrodes [J]. Electron. Sci. Technol., 2010, 23(6): 29
[10] 黄芳丽, 曹全喜, 卫云鸽 等. Ag/AgCl电极的制备及电化学性能 [J]. 电子科技, 2010, 23(6): 29
[11] Wang L Q, Lu Z B, Wang P G, et al. Preparation of solid-state chloride sensor and its application on cement-based materials [J]. Mater. Prot., 2020, 53(11): 49
[11] 王兰芹, 路志博, 王鹏刚 等. 固态氯离子传感器的制备及其在水泥基材料中的应用 [J]. 材料保护, 2020, 53(11): 49
[12] Tian Y P, Zhang P, Zhao K Y, et al. Application of Ag/AgCl sensor for chloride monitoring of mortar under dry-wet cycles [J]. Sensors, 2020, 20: 1394
[13] Zhang M, Fu H, Tian L, et al. Embeddable chloride sensor for monitoring chloride penetration into cement mortar [J]. Sensors, 2024, 24: 2149
[14] Cui H Z, Cao L L, Cao X P, et al. Experimental investigation of chloride ion monitoring in concrete considering the coupling effect of temperature and humidity [J]. J. Build. Eng., 2024, 98: 111155
[15] Cao C W, Wang P G, Zhao T J, et al. Effect of cnrrent density and polarization time on morphology of Ag/AgCl electrode [J]. Mater. Prot., 2016, 49(12): 22
[15] 曹承伟, 王鹏刚, 赵铁军 等. 通电电流密度及极化时间对Ag/AgCl电极形貌的影响 [J]. 材料保护, 2016, 49(12): 22
[16] Du R G, Huang R S, Hu R G, et al. Embeddable combination probe for in-situ measuring Cl- and pH at the reinforcing steel/concrete interface [J]. Chin. J. Anal. Chem., 2005, 33(1): 29
[16] 杜荣归, 黄若双, 胡融刚 等. 埋置式复合探针原位测定钢筋/混凝土界面氯离子和pH值 [J]. 分析化学, 2005, 33(1): 29
[17] Jin M, Xu J X, Jiang L H, et al. Electrochemical characterization of a solid embeddable Ag/AgCl reference electrode for corrosion monitoring in reinforced concrete [J]. Electrochemistry, 2014, 82: 1040
[18] Zhang Z M. Design and preparation of highly stable Ag/AgCl chloride-sensing electrode based on film and interface structure regulation [D]. Guangzhou: South China University of Technology, 2023
[18] 张漳敏. 基于膜层与界面结构调控的高稳定性Ag/AgCl氯离子传感电极的设计制备 [D]. 广州: 华南理工大学, 2023
[19] Angst U, Elsener B, Larsen C K, et al. Potentiometric determination of the chloride ion activity in cement based materials [J]. J. Appl. Electrochem., 2010, 40: 561
[20] Zhang Z M, Hu J, Xu Z P, et al. Degradation process of Ag/AgCl chloride-sensing electrode in cement extract with low chloride concentration [J]. Corros. Sci., 2022, 198: 110107
[21] Zhang Z M, Hu J, Wang Y Y, et al. Relationship between microstructure of AgCl film and electrochemical behavior of Ag|AgCl electrode for chloride detection [J]. Corros. Sci., 2021, 184: 109393
[1] 何奥成, 周祺艳, 肖唐, 屈展庆, 卢向雨, 陈松贵, 冯兴国. 几种混凝土用固态参比电极的综合性能对比研究[J]. 中国腐蚀与防护学报, 2025, 45(3): 773-779.
[2] 梁梓豪, 应宗权, 刘梅梅, 杨帅. 基于Stacking集成模型融合的钢筋混凝土锈胀开裂预测方法[J]. 中国腐蚀与防护学报, 2024, 44(6): 1601-1609.
[3] 董征, 毛永祺, 孟洲, 陈向翔, 付传清, 陆晨涛. 应力作用下钢筋在模拟混凝土孔隙液中的钝化行为研究[J]. 中国腐蚀与防护学报, 2024, 44(6): 1547-1556.
[4] 谢文珍, 王震宇, 韩恩厚. 耐蚀钢筋在模拟混凝土孔隙液环境及海砂混凝土中钢筋在模拟海水环境中的钝化及腐蚀行为[J]. 中国腐蚀与防护学报, 2024, 44(6): 1454-1464.
[5] 史先飞, 陈晓华, 满成. HRB400钢在模拟混凝土孔隙液中的自然钝化行为及耐蚀性能的研究[J]. 中国腐蚀与防护学报, 2024, 44(5): 1213-1222.
[6] 冯兴国, 顾卓然, 范琦琦, 卢向雨, 杨雅师. 改性珊瑚混凝土中2205不锈钢钢筋的耐蚀性研究[J]. 中国腐蚀与防护学报, 2024, 44(3): 789-796.
[7] 刘国强, 张东方, 陈昊翔, 范志宏. 带轧皮预锈钢筋在混凝土养护期间的自然钝化行为研究[J]. 中国腐蚀与防护学报, 2024, 44(2): 505-511.
[8] 商百慧, 马元泰, 孟美江, 李瑛, 娄明, 白晶. HRB400钢筋在模拟混凝土孔隙液环境中的阳极极化特征[J]. 中国腐蚀与防护学报, 2024, 44(2): 422-428.
[9] 刘晶, 陈宣东, 虞爱平, 巩新枝. 再生混凝土氯离子扩散多相细观数值模拟[J]. 中国腐蚀与防护学报, 2023, 43(5): 1111-1118.
[10] 李田雨, 王维康, 李扬涛, 包腾飞, 赵梦凡, 沈欣欣, 倪磊, 马庆磊, 田惠文. 超高性能海水海砂混凝土的硫酸盐腐蚀破坏机理研究[J]. 中国腐蚀与防护学报, 2023, 43(5): 1101-1110.
[11] 董志勇, 徐旭意, 李宇航. 沙粒粒径对混凝土表面高速水流空蚀的影响[J]. 中国腐蚀与防护学报, 2023, 43(1): 166-172.
[12] 彭一展, 弓扶元, 赵羽习. 基于电场分析和仿混凝土实验的杂散电流腐蚀分布规律研究[J]. 中国腐蚀与防护学报, 2022, 42(5): 813-818.
[13] 刘珺, 耿永娟, 李绍纯, 徐爱玲, 侯东帅, 刘昂, 郎秀璐, 陈旭, 刘国锋. TEOS/IBTS涂层对海洋潮汐区混凝土微生物污损防护效果研究[J]. 中国腐蚀与防护学报, 2022, 42(1): 135-142.
[14] 唐荣茂, 刘光明, 师超, 张帮彦, 田继红, 甘鸿禹, 刘永强. 十二烷基苯磺酸钠在模拟混凝土孔隙液中对Q235钢缓蚀及吸附行为研究[J]. 中国腐蚀与防护学报, 2021, 41(6): 857-863.
[15] 安易强, 王昕, 崔中雨. 硝酸钝化对304不锈钢在模拟混凝土孔隙液中点蚀的临界Cl-浓度的影响[J]. 中国腐蚀与防护学报, 2021, 41(6): 804-810.