Please wait a minute...
中国腐蚀与防护学报  2024, Vol. 44 Issue (2): 422-428     CSTR: 32134.14.1005.4537.2023.124      DOI: 10.11902/1005.4537.2023.124
  研究报告 本期目录 | 过刊浏览 |
HRB400钢筋在模拟混凝土孔隙液环境中的阳极极化特征
商百慧1, 马元泰2, 孟美江2, 李瑛2(), 娄明3, 白晶1
1.营口理工学院材料科学与工程学院 辽宁省菱镁矿高值利用工程研究中心 营口 115014
2.中国科学院金属研究所材料腐蚀与防护中心 沈阳 110016
3.营口特种汽车轴瓦有限公司 营口 115004
Anodic Polarization Characteristics of Rebar Steel HRB400 in Simulated Concrete Pore Fluid
SHANG Baihui1, MA Yuantai2, MENG Meijiang2, LI Ying2(), LOU Ming3, BAI Jing1
1.Liaoning Provincial Engineering Research Center for High Value Utilization of Magnesite, School of Materials Science and Technology, Yingkou Institute of Technology, Yingkou 115014, China
2.Corrosion and Protection Division, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
3.Yingkou Special Automobile Bearing Company, Yingkou 115004, China
引用本文:

商百慧, 马元泰, 孟美江, 李瑛, 娄明, 白晶. HRB400钢筋在模拟混凝土孔隙液环境中的阳极极化特征[J]. 中国腐蚀与防护学报, 2024, 44(2): 422-428.
Baihui SHANG, Yuantai MA, Meijiang MENG, Ying LI, Ming LOU, Jing BAI. Anodic Polarization Characteristics of Rebar Steel HRB400 in Simulated Concrete Pore Fluid[J]. Journal of Chinese Society for Corrosion and protection, 2024, 44(2): 422-428.

全文: PDF(2415 KB)   HTML
摘要: 

研究了HRB400钢筋在模拟初期碳化混凝土环境中的阳极极化特征。结果表明,击破电位与对数坐标下的Cl-浓度存在线性关系。为验证钝化电位和过钝化电位作为击破电位关键参数点的合理性,绘制出钢筋点蚀敏感性的Cl-浓度与pH值关系图。

关键词 钢筋混凝土阳极极化钝化电位击破电位过钝化电位    
Abstract

In order to acquire the critical chloride ion concentration for the break-down of passivation film in the initial carbonization environment of concrete. According to the basic principle of electrochemical reaction, the anodic polarization characteristics of rebar steel HRB400 in a simulated initial carbonized concrete solution were studied by means of open-circuit potential- and anode polarization curve-measurement. Results showed that there was a linear relationship between the breakdown potential and the chloride ion concentration in logarithmic plots, and the rationality of passivation potential and tranpassivation potential as the key parameters of the breakdown potential was analyzed. Based on this, the upper limit [Cl-]u and lower limit [Cl-]l of critical chloride ion concentration for rebar steel HRB400 are obtained. Accordingly, the relationship between pH value and chloride concentration of pitting corrosion sensitivity of the rebar steel was drawn. The service status of rebar steel HRB400 in the pH range of 12.5-11.0 is evaluated, and the expressions of the upper limit [Cl-]u and lower limit [Cl-]l of the critical chloride ion concentration and pH value are given.

Key wordsreinforced concrete    anodic polarization    passivation potential    breakdown potential    transpassivation potential
收稿日期: 2023-04-26      32134.14.1005.4537.2023.124
ZTFLH:  TG174  
基金资助:营口理工学院高层次人才科研启动项目(YJRC202018);辽宁省教育厅高等学校基本科研青年项目(LJKQZ2021182)
通讯作者: 李瑛,E-mail:liying@imr.ac.cn,研究方向为腐蚀电化学
Corresponding author: LI Ying, E-mail: liying@imr.ac.cn
作者简介: 商百慧,男,1991年生,博士
图1  钢筋试样在恒定-1 V阴极电位极化下电流密度-时间曲线
图2  钢筋试样在不同pH混凝土模拟液(无氯)中的阳极极化曲线
pHEp/ VEtr/ V
12.5-0.1280.659
12.0-0.0890.689
11.5-0.0210.719
11.00.0370.749
表1  钢筋试样在不同pH值混凝土模拟液中的钝化电位(Ep)与过钝化电位(Etr)
图3  钢筋试样在不同pH混凝土模拟液(无氯)中的过钝化电位
图4  表观阳极极化曲线与3个电极反应E-I示意图
图5  钢筋试样在Cl-浓度变化的混凝土模拟液中的阳极极化曲线
图6  钢筋试样在不同pH值的混凝土模拟液中点蚀击破电位(Eb)与lg[Cl-]关系
pH[Cl-]u[Cl-]l
12.50.2090.0594
12.00.04420.0198
11.50.01040.00524
11.00.002090.00082
表2  钢筋试样点蚀击破的临界Cl-浓度上限[Cl-]u与下限数值[Cl-]l (mol/L)
图7  钢筋点蚀敏感性的Cl-与pH值关系图(pH值位于11~12.5之间)
图8  对数坐标下钢筋试样点蚀击破的临界Cl-浓度上限[Cl-]u与下限数值[Cl-]l与pH值关系图
1 Hou B R. The Cost of Corrosion in China[M]. Beijing: Science Press, 2017: 25
1 侯宝荣. 中国腐蚀成本[M]. 北京: 科学出版社, 2017: 25
2 Liu J, Geng Y J, Li S C, et al. Protection efficacy of TEOS/IBTS coating on microbial fouling of concrete in marine tidal areas[J]. J. Chin. Soc. Corros. Prot., 2022, 42: 135
2 刘 珺, 耿永娟, 李绍纯 等. TEOS/IBTS涂层对海洋潮汐区混凝土微生物污损防护效果研究[J]. 中国腐蚀与防护学报, 2022, 42: 135
3 Wei J, Wang C G, Wei X, et al. Corrosion evolution of steel reinforced concrete under simulated tidal and immersion zones of marine environment[J]. Acta Metall. Sin. Engl. Lett., 2019, 32: 900
4 Tang S Y, Liu J, Chen H D, et al. Analysis on calculation model for shear capacity of rust-stirrup reinforced concrete beams strengthened with fiber reinforced polymer[J]. J. Chin. Soc. Corros. Prot., 2022, 42: 861
4 唐仕盈, 刘 杰, 陈浩东 等. 纤维增强复合材料加固锈蚀箍筋混凝土梁的抗剪承载力计算模型分析[J]. 中国腐蚀与防护学报, 2022, 42: 861
doi: 10.11902/1005.4537.2021.274
5 An Y Q, Wang X, Cui Z Y. Effect of nitric acid passivation on critical Cl- concentration for corrosion of 304 stainless steel in simulated concrete pore solution[J]. J. Chin. Soc. Corros. Prot., 2021, 41: 804
5 安易强, 王 昕, 崔中雨. 硝酸钝化对304不锈钢在模拟混凝土孔隙液中点蚀的临界Cl-浓度的影响[J]. 中国腐蚀与防护学报, 2021, 41: 804
doi: 10.11902/1005.4537.2020.232
6 Guo R Q, Guo Z W, Shi Y Y. Review on research of critical chloride concentration in initial corrosion time of steel bar[J]. Bull. Chin. Ceram. Soc., 2020, 39: 2706
6 郭瑞琦, 郭增伟, 施跃毅. 钢筋初始锈蚀时刻的Cl-临界浓度研究综述[J]. 硅酸盐通报, 2020, 39: 2706
7 Yu X, Al-Saadi S, Zhao X L, et al. Electrochemical investigations of steels in seawater sea sand concrete environments[J]. Materials (Basel), 2021, 14: 5713
doi: 10.3390/ma14195713
8 Liu X M, Shi Z M, Lin H C, et al. Electrochemical corrosion behavior of rebar in simulated pore solution[J]. Corros. Sci. Prot. Technol., 1997, 9(2): 56
8 刘晓敏, 史志明, 林海潮 等. 钢筋在混凝土模拟孔隙液中腐蚀电化学行为[J]. 腐蚀科学与防护技术, 1997, 9(2): 56
9 Zhang F, Pan J S, Lin C J. Localized corrosion behaviour of reinforcement steel in simulated concrete pore solution[J]. Corros. Sci., 2009, 51: 2130
doi: 10.1016/j.corsci.2009.05.044
10 Ai Z Y, Jiang J Y, Sun W, et al. Passive behaviour of alloy corrosion-resistant steel Cr10Mo1 in simulating concrete pore solutions with different pH[J]. Appl. Surf. Sci., 2016, 389: 1126
doi: 10.1016/j.apsusc.2016.07.142
11 Roberge P R. Handbook of Corrosion Engineering[M]. New York: McGRaw-Hill, 2012
12 Liu X H, MacDonald D D, Wang M, et al. Effect of dissolved oxygen, temperature, and pH on polarization behavior of carbon steel in simulated concrete pore solution[J]. Electrochim. Acta, 2021, 366: 137437
doi: 10.1016/j.electacta.2020.137437
13 Cao C N. Principles of Electrochemistry of Corrosion[M]. 3rd ed. Beijing: Chemical Industrial Press, 2008
13 曹楚南. 腐蚀电化学原理[M]. 3版. 北京: 化学工业出版社, 2008
14 Yuan X W, Wang X, Yang H Y. Effects of pH and Cl- content on degradation process of pre-passivated stainless steels in an alkaline solution[J]. J. Electrochem. Soc., 2022, 169: 031506
15 Adewumi A A, Maslehuddin M, Al-Dulaijan S U, et al. Corrosion behaviour of carbon steel and corrosion resistant steel under elevated temperature and chloride concentration in simulated concrete pore solution[J]. Eur. J. Environ. Civil Eng., 2021, 25: 452
doi: 10.1080/19648189.2018.1531270
16 Tan Y T, Wijesinghe S L, Blackwood D J. The inhibitive effect of bicarbonate and carbonate ions on carbon steel in simulated concrete pore solution[J]. Corros. Sci., 2014, 88: 152
doi: 10.1016/j.corsci.2014.07.026
17 Duffó G S, Farina S B. Electrochemical behaviour of steel in mortar and in simulated pore solutions: Analogies and differences[J]. Cem. Concr. Res., 2016, 88: 211
doi: 10.1016/j.cemconres.2016.07.007
18 Zhang J C, Jiang J Y, Li Y, et al. Passive films formed on seawater corrosion resistant rebar 00Cr10MoV in simulated concrete pore solutions[J]. J. Chin. Soc. Corros. Prot., 2016, 36: 442
18 张建春, 蒋金洋, 李 阳 等. 耐海水腐蚀钢筋00Cr10MoV在模拟混凝土孔隙液中钝化膜的研究[J]. 中国腐蚀与防护学报, 2016, 36: 442
19 Jin W L, Yue Z G, Xu C, et al. Accelerated simultaneous determination of chloride depassivation threshold of rebar in concrete[J]. J. Chin. Soc. Corros. Prot., 2012, 32: 223
19 金伟良, 岳增国, 许 晨 等. 混凝土中钢筋脱钝Cl-阈值的快速测定[J]. 中国腐蚀与防护学报, 2012, 32: 223
20 Lin B. Electrochemical comparative study of Q235 steel and 304 SS in simulated concrete pore solutions and the effect of chloride ions on their corrosion behavior[J]. Int. J. Electrochem. Sci., 2019, 14: 3081
doi: 10.20964/2019.02.65
21 Luo H, Wang X Z, Dong C F, et al. Effect of cold deformation on the corrosion behaviour of UNS S31803 duplex stainless steel in simulated concrete pore solution[J]. Corros. Sci., 2017, 124: 178
doi: 10.1016/j.corsci.2017.05.021
22 Liu M, Cheng X Q, LI X G, et al. Corrosion behavior of low-Cr steel rebars in alkaline solutions with different pH in the presence of chlorides[J]. J. Electroanal. Chem., 2017, 803: 40
doi: 10.1016/j.jelechem.2017.09.016
[1] 温佳源, 宋贵宏, 韦小园, 赵鑫, 吴玉胜, 杜昊, 贺春林. Cr含量对Cu合金表面Ni/Ni-Cr/Ni-Cr-Al-Si膜层耐蚀性的影响[J]. 中国腐蚀与防护学报, 2022, 42(4): 638-646.
[2] 梁泰贺, 朱雪梅, 张振卫, 王新建, 张彦生. 铝硅复合对Fe32Mn7Cr3Al2Si钢氧化改性层耐蚀性的影响[J]. 中国腐蚀与防护学报, 2022, 42(2): 317-323.
[3] 丁清苗, 高宇宁, 侯文亮, 秦永祥. Cl-浓度对钢筋混凝土在土壤中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2021, 41(5): 705-711.
[4] 桂琪, 郑大江, 宋光铃. 醇酸清漆保护性的电化学加速评价[J]. 中国腐蚀与防护学报, 2018, 38(3): 274-282.
[5] 孙朝晖,Masoumeh Moradi,杨丽景,Robabeh Bagheri,宋振纶,陈艳霞. 越南芽孢杆菌对2507双相不锈钢加速腐蚀的影响[J]. 中国腐蚀与防护学报, 2016, 36(6): 659-664.
[6] 程旭东, 孙连方, 曹志烽, 朱兴吉, 赵立新. 沿海钢筋混凝土结构Cl-侵蚀数值模拟方法研究[J]. 中国腐蚀与防护学报, 2015, 35(2): 144-150.
[7] 金伟良,郭柱,许晨. 电化学修复后钢筋极化状态分析[J]. 中国腐蚀与防护学报, 2013, 33(1): 75-80.
[8] 徐晶,姚武. 恒流脉冲技术检测混凝土中钢筋的腐蚀[J]. 中国腐蚀与防护学报, 2010, 30(3): 181-186.
[9] 鲁照玲 . 酸性气氛下钢筋混凝土结构腐蚀行为及其机理[J]. 中国腐蚀与防护学报, 2007, 27(2): 119-123 .
[10] 丁元力; 董泽华; 周华林 . 基于护环技术的混凝土中钢筋腐蚀监测研究[J]. 中国腐蚀与防护学报, 2006, 26(5): 257-262 .
[11] 王景茹; 朱立群; 饶思贤; 张峥; 钟群鹏 . A3钢在弹性形变范围内的应变电极行为[J]. 中国腐蚀与防护学报, 2005, 25(4): 226-231 .
[12] 吕战鹏; 黄德伦; 杨武 . 重铬酸根与磁场对铁在硫酸溶液中阳极极化行为的影响*[J]. 中国腐蚀与防护学报, 2001, 21(1): 1-9 .
[13] 王胜先; 林薇薇; 张鉴清 . 硫脲-二乙烯三胺缩聚物对混凝土中钢筋的缓蚀作用[J]. 中国腐蚀与防护学报, 2000, 20(1): 15-21 .
[14] 曾一民; 乔利杰; 林昌健 . 氢对纯N镍钝化膜的影响*[J]. 中国腐蚀与防护学报, 1999, 19(6): 321-326 .
[15] 曾一民; 乔利杰; 林昌健 . 氢对310不锈钢钝化膜的影响*[J]. 中国腐蚀与防护学报, 1999, 19(4): 233-238 .