Please wait a minute...
中国腐蚀与防护学报  2023, Vol. 43 Issue (5): 1101-1110     CSTR: 32134.14.1005.4537.2023.087      DOI: 10.11902/1005.4537.2023.087
  海洋材料腐蚀与防护及钢筋混凝土耐久性与设施服役安全专栏 本期目录 | 过刊浏览 |
超高性能海水海砂混凝土的硫酸盐腐蚀破坏机理研究
李田雨1, 王维康2, 李扬涛1, 包腾飞1(), 赵梦凡1, 沈欣欣3, 倪磊3, 马庆磊4, 田惠文5()
1.河海大学水利水电学院 南京 210098
2.武汉大学水利水电学院 武汉 430070
3.南通市建筑科学研究院有限公司 南通 226000
4.江苏金陵特种涂料有限公司 扬州 225212
5.中国科学院海洋研究所 海洋环境腐蚀与生物污损重点实验室 青岛 266071
Corrosion Failure Mechanism of Ultra-high-performance Concretes Prepared with Sea Water and Sea Sand in an Artificial Sea Water Containing Sulfate
LI Tianyu1, WANG Weikang2, LI Yangtao1, BAO Tengfei1(), ZHAO Mengfan1, SHEN Xinxin3, NI Lei3, MA Qinglei4, TIAN Huiwen5()
1.College of Water Conservancy and Hydropower Engineering, Hohai University, Nanjing 210098, China
2.School of Water Resources and Hydropower Engineering, Wuhan University, Wuhan 430070, China
3.Nantong Academy of Building Research Co., Ltd., Nantong 226000, China
4.Jiangsu Jinling Special Coatings Co., Ltd., Yangzhou 225212, China
5.Key Laboratory of Marine Environmental Corrosion and Bio-Fouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
全文: PDF(16532 KB)   HTML
摘要: 

使用海水和海砂制备超高性能混凝土,并以淡水河砂制备的超高性能混凝土进行对比。在开展硫酸盐侵蚀作用下腐蚀破坏规律研究的基础上,采用压汞法、扫描电子显微镜、能谱仪和X射线衍射仪技术揭示了两种混凝土在硫酸盐侵蚀作用下的损伤机制并总结了其损伤机理。随着硫酸盐侵蚀的发展,混凝土表层的水泥石与Mg2+和SO2-4反应生成钙矾石以及石膏等硫酸盐腐蚀产物,大量腐蚀产物的出现一方面消耗了Ca(OH)2和C-S-H凝胶等水化产物,另一方面使混凝土表面的水泥石失去强度和胶结力,进而出现脱落的现象。混凝土表层的溶蚀,暴露出了位于表层区域的集料和钢纤维,钢纤维接触到环境中的H2O发生了锈蚀。随着硫酸盐腐蚀的进行,暴露在环境中的混凝土表面进一步加快了AFt以及石膏等硫酸盐腐蚀产物的生成,造成失去强度的砂浆与混凝土表面的钢纤维一起脱落,暴露出内部并形成新的混凝土外表面。区别于传统的3种硫酸盐腐蚀破坏形式,超高性能混凝土的硫酸盐腐蚀破坏形式更加复杂,但这些破坏特征均只发生在混凝土表层毫米级的范围内,混凝土内部仍保持着优异的力学与耐久性特征,对混凝土结构的整体影响较小,两种混凝土展现出优异的抗硫酸盐侵蚀性能。

关键词 海砂超高性能混凝土硫酸盐腐蚀微观结构损伤机理    
Abstract

Sulfate is one of the main components of sea water. Concrete structures serving in marine environment may come into contact with sea water, thereby, a series of sulfate induced chemical reactions occurred to cause the destruction of concrete. According to the characteristics of corrosion products, the sulfate induced corrosion attacks may be divided into the following three types, i.e., ettringite sulfate attack, gypsum sulfate attack and carbonite sulfate attack. In this paper, the corrosion behavior of the ultra-high-performance concretes prepared with sea water and sea sand (SSUHPC), as well as those with fresh water and river sand (FRUHPC) were comparatively studied in an artificial sea water containing sulfates. Based on the study of the evolution of sulfate induced corrosion degradation process, the corrosion damage mechanism related with SSUHPC and FRUHPC was revealed by using MIP, SEM-EDS and XRD techniques, and the damage mechanism was summarized. With the progress of sulfate corrosion process, the cementite on the surface of concrete reacts with Mg2+ and SO2-4 to produce corrosion products such as AFt and gypsum sulfate etc. On the one hand, the formation of a large number of corrosion products may consume hydration products such as Ca(OH)2 and C-S-H gel; on the other hand, the cementite on the surface of concrete loses strength and cementation, and then falls off. Due to the corrosion damage of the concrete surface layer, the aggregates and steel reinforce bars within the concrete are exposed, therewith, the steel bars will rust once they come into contact with the corrosive fluids within the environment. With the progress of sulfate corrosion, the formation of corrosion products Aft, gypsum sulfate etc.is speeded, and which cumulated on the exposed concrete surface. Hence, the mortar that loses strength falls off together with the steel bars from the concrete surface, so that to further expose the interior of the concrete, which in turn, act as a “new outer surface” of the concrete faced to the corrosive environment. Different from the traditional three types of sulfate corrosion failure forms, the damage forms of ultra-high-performance concrete are more complex, but these damage characteristics only occur within the millimeter range of the concrete surface, and the concrete still maintains excellent mechanical and durability characteristics internally, with little overall impact on the concrete structure. In sum, the SSUHPC and FRUHPC show excellent sulfate resistance.

Key wordssea sand    UHPC    sulphate corrosion    microstructure    damage mechanism
收稿日期: 2023-03-27      32134.14.1005.4537.2023.087
ZTFLH:  TD123  
基金资助:江苏省卓越博士后计划,江苏省科技厅科技项目基础研究计划自然科学基金(SBK2023040182);江苏省土木建筑学会科研课题
通讯作者: 包腾飞,E-mail: baotf@hhu.edu.cn,研究方向为超高性能混凝土耐久性损伤机理;田惠文,E-mail: tianhuiwen@qdio.ac.cn,研究方向为海工环境友好型防腐关键技术   
Corresponding author: BAO Tengfei, E-mail: baotf@hhu.edu.cn;TIAN Huiwen, E-mail: tianhuiwen@qdio.ac.cn   
作者简介: 李田雨,男,1993年生,博士,讲师

引用本文:

李田雨, 王维康, 李扬涛, 包腾飞, 赵梦凡, 沈欣欣, 倪磊, 马庆磊, 田惠文. 超高性能海水海砂混凝土的硫酸盐腐蚀破坏机理研究[J]. 中国腐蚀与防护学报, 2023, 43(5): 1101-1110.
LI Tianyu, WANG Weikang, LI Yangtao, BAO Tengfei, ZHAO Mengfan, SHEN Xinxin, NI Lei, MA Qinglei, TIAN Huiwen. Corrosion Failure Mechanism of Ultra-high-performance Concretes Prepared with Sea Water and Sea Sand in an Artificial Sea Water Containing Sulfate. Journal of Chinese Society for Corrosion and protection, 2023, 43(5): 1101-1110.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2023.087      或      https://www.jcscp.org/CN/Y2023/V43/I5/1101

Material

CaO

%

SiO2

%

Al2O3

%

MgO

%

Fe2O3

%

Na2O

%

SO3

%

Loss on ignition

Specific surface area

m2·g-1

Apparent density

g·cm-3

P·O 42.5 cement61.53615.4044.430.7244.9060.0432.7552.24%35003.1
Silica fume0.56897.350.3370.4140.0030.1010.1922.81%(20~28)×1042.0
Fly ash1.558302.84.33.20.83.31%34002.1
表1  水泥、粉煤灰和硅灰的基本物理特性
SpeciesCementFly ashSilica fumeSteel fibreSuper plasticizerSea sandRiver sandSea waterFresh water
SSUHPC0.60.250.150.190.031.4-0.14-
FRUHPC0.60.250.150.190.03-1.4-0.14
表2  不同比例 (质量比) 的原料组成
图1  硫酸盐腐蚀期过程中SSUHPC的损伤规律
图2  硫酸盐腐蚀期过程中FRUHPC的损伤规律
图3  硫酸盐腐蚀过程中SSUHPC和FRUHPC之间的孔隙率变化
图4  硫酸盐腐蚀前SSUHPC和FRUHPC的微观结构特征
图5  硫酸盐腐蚀6个月后SSUHPC的表面
图6  硫酸盐腐蚀6个月后SSUHPC的内部
图7  硫酸盐腐蚀6个月后FRUHPC的表面
图8  硫酸盐腐蚀6个月后FRUHPC的内部
图9  SSUHPC和FRUHPC硫酸盐腐蚀前后的XRD谱
图10  FRUHPC和SSUHPC的硫酸盐腐蚀破坏机制示意图
1 Hime W G, Mather B. "Sulfate attack," or is it? [J]. Cem. Concr. Res., 1999, 29: 789
doi: 10.1016/S0008-8846(99)00068-X
2 Chen J K, Jiang M Q. Long-term evolution of delayed ettringite and gypsum in Portland cement mortars under sulfate erosion [J]. Constr. Build. Mater., 2009, 23: 812
doi: 10.1016/j.conbuildmat.2008.03.002
3 Cwirzen A, Sztermen P, Habermehl-Cwirzen K. Effect of Baltic seawater and binder type on frost durability of concrete [J]. J. Mater. Civ. Eng., 2014, 26: 283
doi: 10.1061/(ASCE)MT.1943-5533.0000803
4 González M A, Irassar E F. Ettringite formation in low C3A Portland cement exposed to sodium sulfate solution [J]. Cem. Concr. Res., 1997, 27: 1061
doi: 10.1016/S0008-8846(97)00093-8
5 Hagelia P, Sibbick R G. Thaumasite Sulfate Attack, Popcorn Calcite Deposition and acid attack in concrete stored at the « Blindtarmen» test site Oslo, from 1952 to 1982 [J]. Mater. Charact., 2009, 60: 686
doi: 10.1016/j.matchar.2009.01.007
6 Irassar E F, Bonavetti V L, González M. Microstructural study of sulfate attack on ordinary and limestone Portland cements at ambient temperature [J]. Cem. Concr. Res., 2003, 33: 31
doi: 10.1016/S0008-8846(02)00914-6
7 Monteiro P J M, Kurtis K E. Time to failure for concrete exposed to severe sulfate attack [J]. Cem. Concr. Res., 2003, 33: 987
doi: 10.1016/S0008-8846(02)01097-9
8 Neville A. The confused world of sulfate attack on concrete [J]. Cem. Concr. Res., 2004, 34: 1275
doi: 10.1016/j.cemconres.2004.04.004
9 Sibbick T, Fenn D, Crammond N. The occurrence of thaumasite as a product of seawater attack [J]. Cem. Concr. Compos., 2003, 25: 1059
doi: 10.1016/S0958-9465(03)00128-8
10 Bonen D, Cohen M D. Magnesium sulfate attack on Portland cement paste-I. Microstructural analysis [J]. Cem. Concr. Res., 1992, 22: 169
doi: 10.1016/0008-8846(92)90147-N
11 Han S W, Zhong J, Yu Q S, et al. Sulfate resistance of eco-friendly and sulfate-resistant concrete using seawater sea-sand and high-ferrite Portland cement [J]. Constr. Build. Mater., 2021, 305: 124753
doi: 10.1016/j.conbuildmat.2021.124753
12 Huang X, Hu S G, Wang F Z, et al. Enhanced sulfate resistance: The importance of iron in aluminate hydrates [J]. ACS Sustainable Chem. Eng., 2019, 7: 6792
doi: 10.1021/acssuschemeng.8b06097
13 Lee S T, Moon H Y, Swamy R N. Sulfate attack and role of silica fume in resisting strength loss [J]. Cem. Concr. Compos., 2005, 27: 65
doi: 10.1016/j.cemconcomp.2003.11.003
14 Santhanam M, Cohen M D, Olek J. Mechanism of sulfate attack: a fresh look Part 2. Proposed mechanisms [J]. Cem. Concr. Res., 2003, 33: 341
doi: 10.1016/S0008-8846(02)00958-4
15 Gupta S, Muthukrishnan S, Kua H W. Comparing influence of inert biochar and silica rich biochar on cement mortar-Hydration kinetics and durability under chloride and sulfate environment [J]. Constr. Build. Mater., 2021, 268: 121142
doi: 10.1016/j.conbuildmat.2020.121142
16 Liu H, Huang F. Experimental study on accelerated speed of concrete sulfate attack [J]. Appl. Mech. Mater., 2012, 1975: 204
17 Qin L, Gao X J, Su A S, et al. Effect of carbonation curing on sulfate resistance of cement-coal gangue paste [J]. J. Clean. Prod., 2021, 278: 123897
doi: 10.1016/j.jclepro.2020.123897
18 Turchin V, Yudina L, Sattarova A. Research sulfate resistance of cement-containing composition [J]. Procedia Eng., 2013, 57: 1166
doi: 10.1016/j.proeng.2013.04.147
19 Ding Q J, Liu Y Q, Liu X Q, et al. Effects of sulfate attack on microstructure of UHPC hydration products under different curing regimes [J]. Bull. Chin. Ceram. Soc., 2018, 37: 772
19 丁庆军, 刘勇强, 刘小清 等. 硫酸盐侵蚀对不同养护制度UHPC水化产物微结构的影响 [J]. 硅酸盐通报, 2018, 37: 772
20 Li T Y, Sun X, Shi F Y, et al. The mechanism of anticorrosion performance and mechanical property differences between seawater sea-sand and freshwater river-sand ultra-high-performance polymer cement mortar (UHPC) [J]. Polymers, 2022, 14: 3105
doi: 10.3390/polym14153105
21 Song S M, Wei C X. Durability of the reactive powder concrete (RPC) [J]. Concrete, 2006, (2): 72
21 宋少民, 未翠霞. 活性粉末混凝土耐久性研究 [J]. 混凝土, 2006, (2): 72
22 Limeira J, Etxeberria M, Agulló L, et al. Mechanical and durability properties of concrete made with dredged marine sand [J]. Constr. Build. Mater., 2011, 25: 4165
doi: 10.1016/j.conbuildmat.2011.04.053
23 Liu W, Cui H Z, Dong Z J, et al. Carbonation of concrete made with dredged marine sand and its effect on chloride binding [J]. Constr. Build. Mater., 2016, 120: 1
doi: 10.1016/j.conbuildmat.2016.05.011
24 Vafaei D, Hassanli R, Ma X, et al. Sorptivity and mechanical properties of fiber-reinforced concrete made with seawater and dredged sea-sand [J]. Constr. Build. Mater., 2021, 270: 121436
doi: 10.1016/j.conbuildmat.2020.121436
25 Li T Y, Liu X Y, Zhang Y M, et al. Carbonization mechanism of reactive powder concrete with sea-water and sea sand [J]. Mater. Rep., 2020, 34: 8042
25 李田雨, 刘小艳, 张玉梅 等. 海水海砂制备活性粉末混凝土的碳化机理 [J]. 材料导报, 2020, 34: 8042
26 Li T Y, Liu X Y, Zhang Y M, et al. Preparation of sea water sea sand high performance concrete (SHPC) and serving performance study in marine Environment [J]. Constr. Build. Mater., 2020, 254: 119114
doi: 10.1016/j.conbuildmat.2020.119114
27 Liu W, Xie Y J, Dong B Q. Study of the resistance to sulfate attach of concrete made with dredged marine sand [J]. Ind. Constr., 2014, 44 (8) : 131
27 刘 伟, 谢友均, 董必钦. 海砂混凝土抗硫酸盐侵蚀性能研究 [J]. 工业建筑, 2014, 44 (8) : 131
28 Su Q, Chen A R. Research on corrosion to washed sea sand concrete attacked by sulfate [J]. Concrete, 2013, (1) : 21
28 苏 卿, 陈艾荣. 硫酸盐对淡化海砂混凝土的腐蚀研究 [J]. 混凝土, 2013, (1) : 21
29 Zhang Z, Sang Z, Zhang L, et al. Experimental research on durability of concrete made by seawater and sea-sand [J]. Adv. Mater. Res., 2013, 2216: 641
30 Ting M Z Y, Wong K S, Rahman M E, et al. Mechanical and durability performance of marine sand and seawater concrete incorporating silicomanganese slag as coarse aggregate [J]. Constr. Build. Mater., 2020, 254: 119195
doi: 10.1016/j.conbuildmat.2020.119195
31 Skalny J, Marchand J, Odler I. Sulfate Attack on Concrete [M]. London: Spon Press, 2002
[1] 张而耕, 杨磊, 杨虎, 梁丹丹, 陈强, 周琼, 黄彪. 热喷涂Fe基非晶涂层的耐腐蚀性的研究及优化[J]. 中国腐蚀与防护学报, 2023, 43(2): 399-407.
[2] 邱盼盼, 舒小勇, 胡林丽, 杨韬, 房雨晴. Pt改性镍基高温合金铝化物涂层研究进展[J]. 中国腐蚀与防护学报, 2022, 42(2): 186-192.
[3] 王来滨, 刘侠和, 王梅, 高俊杰. 三价铬基转化膜生长动力学研究现状及进展[J]. 中国腐蚀与防护学报, 2021, 41(5): 571-578.
[4] 罗伟文, 季韬, 林魁. 水泥类型对海砂混凝土在生物硫酸腐蚀下劣化影响的研究[J]. 中国腐蚀与防护学报, 2021, 41(5): 691-696.
[5] 李聪玮, 杜双明, 曾志琳, 刘二勇, 王飞虎, 马付良. 电流密度对Ni-Co-B镀层微观结构及磨蚀性能的影响[J]. 中国腐蚀与防护学报, 2020, 40(5): 439-447.
[6] 闻洋, 熊林, 陈伟, 薛刚, 宋文学. 干湿循环下聚乙烯醇纤维混凝土抗Cl-渗透性能研究[J]. 中国腐蚀与防护学报, 2020, 40(4): 381-388.
[7] 姜冬雪,付颖,张峻巍,张伟,辛丽,朱圣龙,王福会. 钛合金表面Al2O3陶瓷膜制备及性能研究[J]. 中国腐蚀与防护学报, 2019, 39(6): 469-476.
[8] 魏欣欣,张波,马秀良. FeCr15Ni15单晶600 ℃下热生长氧化膜的TEM观察[J]. 中国腐蚀与防护学报, 2019, 39(5): 417-422.
[9] 于美,魏新帝,范世洋,刘建华,李松梅,钟锦岩. 应力作用下2297铝锂合金腐蚀行为研究[J]. 中国腐蚀与防护学报, 2019, 39(5): 439-445.
[10] 史昆玉,张进中,张毅,万毅. Nb2N涂层制备及其耐腐蚀性能研究[J]. 中国腐蚀与防护学报, 2019, 39(4): 313-318.
[11] 樊志民, 于锦, 宋影伟, 单大勇, 韩恩厚. 镁合金点蚀的研究进展[J]. 中国腐蚀与防护学报, 2018, 38(4): 317-325.
[12] 李越, 王剑, 张勇, 白晋钢, 胡亚迪, 乔永锋, 张彩丽, 韩培德. 2205双相不锈钢密闭容器中高温初始氧化过程分析[J]. 中国腐蚀与防护学报, 2018, 38(3): 296-302.
[13] 白强,邹妍,孔祥峰,高杨,刘岩,董胜. 奥氏体焊条水下湿法焊接CCSE40钢在海水中的腐蚀电化学行为研究[J]. 中国腐蚀与防护学报, 2016, 36(5): 427-432.
[14] 毛江鸿,金伟良,张华,许晨,夏晋. 海砂混凝土建筑的耐久性提升技术及应用研究[J]. 中国腐蚀与防护学报, 2015, 35(6): 563-570.
[15] 杨英,董瑜亮,高立军,宫骏,姜辛,孙超. 氮气流量及后续热处理对多弧离子镀制备Ti2AlN涂层的影响规律[J]. 中国腐蚀与防护学报, 2012, 32(1): 1-6.