Please wait a minute...
中国腐蚀与防护学报  2025, Vol. 45 Issue (5): 1408-1416     CSTR: 32134.14.1005.4537.2024.355      DOI: 10.11902/1005.4537.2024.355
  研究报告 本期目录 | 过刊浏览 |
Cu-15Ni-8Sn合金在含S2-3.5%NaCl溶液中的腐蚀行为
范世林1,2, 杜娟2(), 杨少丹3, 周延军4, 宋克兴2, 张国赏2, 岳鹏飞2, 杨冉4, 王晓军1
1 哈工大郑州研究院 郑州 450046
2 河南省科学院材料研究所 郑州 450046
3 郑州大学材料科学与工程学院 郑州 450046
4 河南科技大学材料科学与工程学院 洛阳 471023
Corrosion Behavior of Cu-15Ni-8Sn Alloy in 3.5%NaCl Solution Containing S2-
FAN Shilin1,2, DU Juan2(), YANG Shaodan3, ZHOU Yanjun4, SONG Kexing2, ZHANG Guoshang2, YUE Pengfei2, YANG Ran4, WANG Xiaojun1
1 Zhengzhou Research Institute of Harbin Institute of Technology, Zhengzhou 450046, China
2 Institute of Materials Science, Henan Academy of Sciences, Zhengzhou 450046, China
3 School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450046, China
4 School of Materials Science and Engineering, Henan University of Science and Technology, Luoyang 471023, China
引用本文:

范世林, 杜娟, 杨少丹, 周延军, 宋克兴, 张国赏, 岳鹏飞, 杨冉, 王晓军. Cu-15Ni-8Sn合金在含S2-3.5%NaCl溶液中的腐蚀行为[J]. 中国腐蚀与防护学报, 2025, 45(5): 1408-1416.
Shilin FAN, Juan DU, Shaodan YANG, Yanjun ZHOU, Kexing SONG, Guoshang ZHANG, Pengfei YUE, Ran YANG, Xiaojun WANG. Corrosion Behavior of Cu-15Ni-8Sn Alloy in 3.5%NaCl Solution Containing S2-[J]. Journal of Chinese Society for Corrosion and protection, 2025, 45(5): 1408-1416.

全文: PDF(12782 KB)   HTML
摘要: 

通过静态浸泡腐蚀实验,研究了Cu-15Ni-8Sn合金在含有10 mg/L S2-条件下腐蚀时间对合金静态腐蚀行为的影响规律,并与不含S2-的腐蚀行为进行对比。采用电化学阻抗谱(EIS)测试方法,结合扫描电子显微镜(SEM)、能谱分析(EDS)和X射线光电子能谱(XPS)等表征手段,探讨静态浸泡时间对合金电化学行为、腐蚀形貌的影响规律,揭示含/不含S2-条件下合金腐蚀机理。结果表明,在不含S2-的溶液中浸泡30 d后,Cu-15Ni-8Sn合金表面形成稳定的钝化膜,主要由碱式氯化铜Cu2(OH)3Cl组成,钝化膜能够有效阻止Cl⁻的进一步侵蚀,腐蚀速率为0.02235 g·m-2·h-1。而在含S2-的溶液中,初期生成的硫化物(Cu2S和CuS)提供一定的保护作用,浸泡1 d后的腐蚀速率仅为0.00962 g·m-2·h-1,远低于未添加S²⁻的溶液(0.05674 g·m-2·h-1)中。但随着时间的延长,合金浸泡腐蚀30 d后,在含有S2-的溶液中的腐蚀失重率为0.03418 g·m-2·h-1,高于不含S2-的溶液中的腐蚀失重率,腐蚀产物变为Cu2(OH)3Cl、CuSO4、CuS、Ni(OH)2和SnS2的混合物。这些腐蚀产物的多孔和非保护性特性增加了腐蚀点,硫化物膜的劣化和破裂进一步加剧了腐蚀过程,使得合金在含S2-溶液中的平均腐蚀速率高于不含S2-溶液中的。

关键词 Cu-15Ni-8Sn合金S2-腐蚀腐蚀行为    
Abstract

The corrosion behavior of Cu-15Ni-8Sn alloy in 3.5%NaCl solution containing 10 mg/L sulfur ions (S2-) was assessed by means of immersion tests, electrochemical impedance spectroscopy (EIS), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), and X-ray photoelectron spectroscopy (XPS). The results show that after 30 d of immersion in 3.5%NaCl solution without sulfur ions, a stable passivation film is formed on the surface of Cu-15Ni-8Sn alloy, mainly composed of basic copper chloride Cu2(OH)3Cl. The passivation film can effectively prevent the further attack of Cl-, and the average corrosion rate is 0.02235 g·m-2·h-1. In sulfur ion-containing solutions, the sulfides (Cu2S and CuS) formed in the initial stage provide a certain degree of protection. However, with the extension of time, after the alloy is immersed and corroded for 30 days in the solution containing sulfur ions, the corrosion weight loss rate is 0.03418 g·m-2·h-1, which is higher than that in the solution without sulfur ions. the corrosion products are turn into the mixture of basic copper chloride (Cu2(OH)3Cl), copper sulfate (CuSO4), copper sulfide (CuS), nickel hydroxide (Ni(OH)2), and tin sulfide (SnS2). This porous corrosion film provides much weaker protection for the alloys, and the deterioration and rupture of the sulfide film further aggravate the corrosion process, making the average corrosion rate of the alloy in the sulfur ion-containing environment higher than that in a sulfur ion-free environment.

Key wordsCu-15Ni-8Sn alloy    sulfide-induced corrosion    corrosion behavior
收稿日期: 2024-10-31      32134.14.1005.4537.2024.355
ZTFLH:  TG172.5  
基金资助:河南省科学院科研启动经费(231817003);河南省自然科学基金(242300420030)
通讯作者: 杜娟,E-mail:juan_du@hnas.ac.cn,研究方向为材料腐蚀与防护
Corresponding author: DU Juan, E-mail: juan_du@hnas.ac.cn
作者简介: 范世林,男,2001年生,硕士生
图1  Cu-15Ni-8Sn合金浸泡在0和10 mg/L Na2S的3.5%NaCl溶液中30 d的腐蚀速率
图2  Cu-15Ni-8Sn合金在含不同浓度Na2S的3.5NaCl溶液中浸泡30 d内的Nyquist图及Bode图
图3  Cu-15Ni-8Sn合金在不同Na2S含量的3.5%NaCl溶液中浸泡时EIS拟合的等效电路图
Time / dRs / Ω·cm2Qf-Y0 / Ω-1·cm-2·s nQf-nRf / Ω·cm2Qdl-Y0 / Ω-1·cm-2·s nQdl-nRt / Ω·cm2
15.6965.574 × 10-50.74573.4911.500 × 10-40.75782.200 × 104
37.2842.397 × 10-40.72584.610 × 1012.451 × 10-40.65613.743 × 104
66.0429.567 × 10-50.67432.235 × 1012.200 × 10-40.69593.132 × 104
125.7308.860 × 10-50.65772.785 × 1012.571 × 10-40.68352.835 × 104
185.3267.027 × 10-50.63672.580 × 1013.513 × 10-40.67622.328 × 104
245.6606.378 × 10-50.64212.416 × 1013.697 × 10-40.68082.302 × 104
306.0226.192 × 10-40.63462.511 × 1014.221 × 10-40.69352.319 × 104
表1  Cu-15Ni-8Sn合金在不添加Na2S的3.5%NaCl水溶液中浸泡不同时间后的EIS拟合参数
Time / dRs / Ω·cm2Qdl-Y0 / Ω-1·cm-2·s nQdl-nRf / Ω·cm2Qdl-Y0 / Ω-1·cm-2·s nQdl-nRt / Ω·cm2W / 10-4·Ω-1·cm-2·s1/2
17.3982.654 × 10-40.8018---7.547 × 1031.361 × 10-3
37.6324.227 × 10-40.7660---8.231 × 1031.571 × 10-3
66.0063.167 × 10-40.58147.7581.212 × 10-40.88432.429 × 104-
125.3723.184 × 10-40.53411.404 × 1012.217 × 10-40.82552.230 × 104-
185.7382.241 × 10-40.54261.543 × 1012.616 × 10-40.78742.646 × 104-
245.8212.265 × 10-40.54451.780 × 1012.902 × 10-40.78092.454 × 104-
305.1021.622 × 10-40.53991.957 × 1014.016 × 10-40.72752.248 × 104-
表2  Cu-15Ni-8Sn合金在含10 mg/L Na2S的3.5%NaCl水溶液中浸泡不同时间后的EIS拟合参数
图4  Cu-15Ni-8Sn合金浸泡在Na2S含量不同的3.5%NaCl溶液中浸泡不同时间后的表面微观形貌与成分
图5  Cu-15Ni-8Sn合金在不同含量Na2S的3.5%NaCl溶液中浸泡30 d的截面形貌和元素分布
图6  Cu-15Ni-8Sn合金在含0和10 mg/L Na2S的3.5% NaCl溶液中浸泡30 d后的XRD谱
图7  Cu-15Ni-8Sn合金在不同含量Na2S的3.5%NaCl溶液中浸泡30 d后的XPS全谱图
图8  Cu-15Ni-8Sn合金在不同含量Na2S的3.5%NaCl溶液中浸泡30 d后腐蚀产物XPS图谱
[1] Caris J, Varadarajan R, Stephens Jr J J, et al. Microstructural effects on tension and fatigue behavior of Cu-15Ni-8Sn sheet [J]. Mater. Sci. Eng., 2008, 491A: 137
[2] Lei Y H, Yin Y S, Liu C H, et al. Electrochemical corrosion behavior of Cu-15Ni-8Sn alloy in marine microbial medium [J]. Adv. Mater. Res, 2009, 79-82: 1099
[3] Appa Rao B V. Chaitanya Kumar K. 5-(3-Aminophenyl)tetrazole-A new corrosion inhibitor for Cu-Ni (90/10) alloy in seawater and sulphide containing seawater [J]. Arab. J. Chem., 2017, 10(suppl. 2) : S2245
[4] Patil A P, Tupkary R H. Cu-Ni-Zn-Mn alloys for sulphide polluted seawater applications [J]. J. Corros. Sci. Eng., 2003, 7
[5] Yuan T, Zhang M D, Ni J H, et al. The brazing effect on the corrosion mechanism of a multilayer material with Cu [J]. Anti-Corros Methods Mater., 2017, 64: 664
[6] ElDomiaty A, Alhajji J N. The susceptibility of 90Cu-10Ni alloy to stress corrosion cracking in seawater polluted by sulfide ions [J]. J. Mater. Eng. Perform., 1997, 6: 534
[7] Alhajji J N, Reda M R. Corrosion of Cu-Ni alloys in sulfide-polluted seawater [J]. Corrosion, 1993, 49: 809
[8] Eiselstein L E, Syrett B C, Wing S S, et al. The accelerated corrosion of Cu-Ni alloys in sulphide-polluted seawater: mechanism no.2 [J]. Corros. Sci., 1983, 23: 223
[9] De Sanchez S R, Schiffrin D J. The flow corrosion mechanism of copper base alloys in sea water in the presence of sulphide contamination [J]. Corros. Sci., 1982, 22: 585
[10] Shi Z Y, Liu B, Liu Y, et al. Progress of corrosion behavior and anti-corrosion technology for typical copper-nickel alloys under marine environment [J]. Equip. Environ. Eng., 2020, 17(8): 38
[10] 石泽耀, 刘 斌, 刘 岩 等. 典型铜镍合金在海洋环境中腐蚀行为与防护技术研究进展 [J]. 装备环境工程, 2020, 17(8): 38
[11] Deyong L, Elboujdaïni M, Tremblay R, et al. Electrochemical behaviour of rapidly solidified and conventionally cast Cu-Ni-Sn alloys [J]. J. Appl. Electrochem., 1990, 20: 756
[12] Amegroud H, Guenbour A, Bellaouchou A, et al. A comprehensive investigation of the electrochemical behavior of nickel-aluminum bronze alloy in alkaline solution: the effect of film formation potential [J]. Colloids Surf., 2021, 614A: 126126
[13] Kuss C, Payne N A, Mauzeroll J. Probing passivating porous films by scanning electrochemical microscopy [J]. J. Electrochem. Soc., 2016, 163: H3066
[14] Pan W, Li Y, Sun Z Y, et al. Application of electrochemical impedance spectroscopy in corrosion protection [J]. New Chem. Mater., 2021, 49(10): 257
[14] 潘 巍, 李 瑜, 孙昭宜 等. 电化学阻抗谱技术在腐蚀防护中的应用现状 [J]. 化工新型材料, 2021, 49(10): 257
[15] Wang L Q, Snihirova D, Deng M, et al. Revealing physical interpretation of time constants in electrochemical impedance spectra of Mg via Tribo-EIS measurements [J]. Electrochim. Acta, 2022, 404: 139582
[16] Zhao J G, Gong X X, Yu Y P, et al. Research and application of Cu-15Ni-8Sn elastic alloy [J]. Shanghai Met. (Col. Sec.), 1989, (3): 15
[16] 赵建国, 龚学湘, 俞玉平 等. Cu-15Ni-8Sn弹性合金的研究与应用 [J]. 上海金属有色分册, 1989, (3): 15
[17] Wang S L, Li J L, Zhang R X, et al. Charge transfer resistance of copper and nickel thin film electrodes in nano dimensions [J]. Mater. Lett., 2017, 198: 61
[18] Li G X, Xing H Y, Du M, et al. Accelerated corrosion of 70/30 copper-nickel alloys in sulfide-polluted seawater environment by sulfide [J]. J. Mater. Res. Technol., 2024, 30: 8620
[19] Wang B N, Wang X Z, Yang S, et al. Research progress on catalysts for organic sulfur hydrolysis: Review of activity and stability [J]. Chin. J. Chem. Eng., 2024, 71: 203
[20] Liu T, Zhang W X, Zhai X Y, et al. Dense ternary-size particles interstitial filling gradation stacking model for preparing high-quality indium tin oxide targets [J]. Chem. Eng. Sci., 2022, 248: 117165
[21] Nesbitt H W, Legrand D, Bancroft G M. Interpretation of Ni 2p XPS spectra of Ni conductors and Ni insulators [J]. Phys. Chem. Min., 2000, 27: 357
[22] Ulrich Hillebrecht F, Fuggle J C, Bennett P A, et al. Electronic structure of Ni and Pd alloys. II. X-ray photoelectron core-level spectra [J]. Phys. Rev., 1983, 27B: 2179
[23] Dahal S, Rana D, Sinkovic B. Changes in electronic structure within NiS x (0.60 < x < 1.53) compound series [J]. Vacuum, 2025, 231: 113806
[24] Koteeswara Reddy N, Devika M, Hahn Y B, et al. Impact of chemical treatment on the surface, structure, optical and electrical properties of SnS thin films [J]. Appl. Surf. Sci., 2013, 268: 317
[25] Yin B, Liu T, Dong L H, et al. Corrosion resistance of Cu-15Ni-8Sn alloy in seawater [J]. Corros. Prot., 2012, 33: 849
[25] 尹 兵, 刘 涛, 董丽华 等. Cu-15Ni-8Sn合金在海水中的耐腐蚀性研究 [J]. 腐蚀与防护, 2012, 33: 849
[26] Mansfeld F, Liu G, Xiao H, et al. The corrosion behavior of copper alloys, stainless steels and titanium in seawater [J]. Corros. Sci., 1994, 36: 2063
[27] Li G X, Xing H Y, Du M, et al. Accelerated corrosion of 70/30 copper-nickel alloys in sulfide-polluted seawater environment by sulfide [J]. J. Mater. Res. Technol., 2024, 30: 8620
[28] Al Hossani H I, Saber T M H, Mohammed R A, et al. Galvanic corrosion of copper-base alloys in contact with molybdenum-containing stainless steels in Arabian gulf water [J]. Desalination, 1997, 109: 25
[1] 蔡科涛, 季磊, 张震, 冯强, 邓伟林, 兰贵红, 何莎, 赵占勇, 白培康. Mg-Gd-Y-Zn-Zr合金在NaClNa2SO4 溶液中腐蚀行为研究[J]. 中国腐蚀与防护学报, 2025, 45(5): 1289-1299.
[2] 谷松伦, 张繁, 黄国胜, 姜丹, 董国君. 冷喷涂Cu-Ti伪合金防污材料的腐蚀行为[J]. 中国腐蚀与防护学报, 2025, 45(5): 1309-1319.
[3] 段敬民, 董勇, 缪东美, 杨玉婧, 毛凌波, 章争荣. 热处理工艺对Al0.5CoCrFeNi高熵合金在不同介质下腐蚀行为及力学性能的影响[J]. 中国腐蚀与防护学报, 2025, 45(4): 983-994.
[4] 张珊珊, 刘元才, 徐铁伟, 杨发展. 成型方向及热处理对选区激光熔化Ti6Al4V合金腐蚀性能的影响[J]. 中国腐蚀与防护学报, 2025, 45(4): 995-1004.
[5] 翟熙伟, 刘士一, 王丽, 贾瑞灵, 张慧霞. 载荷对5383铝合金焊接接头电化学腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2025, 45(2): 515-522.
[6] 杨海云, 刘春泉, 熊芬, 陈敏纳, 谢岳林, 彭龙生, 孙胜, 刘海洲. 超高速激光熔覆制备耐腐蚀涂层研究进展[J]. 中国腐蚀与防护学报, 2024, 44(4): 847-862.
[7] 王玉雪, 朱澳鸿, 王力伟, 崔中雨. 两种新型Ni-Cr-Mo-V钢在模拟海水环境中的腐蚀行为对比研究[J]. 中国腐蚀与防护学报, 2024, 44(4): 918-926.
[8] 翁硕, 孟超, 朱江峰, 王艾, 常馨, 康妘, 何小田, 赵礼辉. 应力控制模式下疲劳损伤对AA7075-T651铝合金腐蚀行为影响的研究[J]. 中国腐蚀与防护学报, 2024, 44(4): 1029-1037.
[9] 张成龙, 张斌, 朱敏, 袁永锋, 郭绍义, 尹思敏. CoCrNi中熵合金在不同浓度NH4Cl溶液中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2024, 44(3): 725-734.
[10] 邓志彬, 胡枭, 刘应彦, 岳航, 张千, 汤海平, 鲁锐. 在役环境磁场对L360管线钢及焊接接头腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2024, 44(2): 471-479.
[11] 宋东东, 万红霞, 徐栋, 周倩. 轧制对ZM5镁合金腐蚀性能的影响[J]. 中国腐蚀与防护学报, 2024, 44(1): 213-220.
[12] 熊伊铭, 梅婉, 王泽华, 余瑞, 徐诗瑶, 吴磊, 张欣. 磁场作用下5083铝合金腐蚀行为研究[J]. 中国腐蚀与防护学报, 2024, 44(1): 229-236.
[13] 钟嘉欣, 关蕾, 李雨, 黄家勇, 石磊. 2xxx系铝合金第二相对搅拌摩擦焊接头腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2023, 43(6): 1247-1254.
[14] 刘浩, 郭晓开, 王维, 伍廉奎, 曹发和, 孙擎擎. 超声喷丸对7075铝合金棒材组织结构与性能的影响[J]. 中国腐蚀与防护学报, 2023, 43(6): 1293-1302.
[15] 何静, 于航, 傅梓瑛, 岳鹏辉. 水溶性缓蚀剂对建筑管道用Q235钢腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2023, 43(5): 1041-1048.