Please wait a minute...
中国腐蚀与防护学报  2025, Vol. 45 Issue (5): 1390-1398     CSTR: 32134.14.1005.4537.2024.391      DOI: 10.11902/1005.4537.2024.391
  研究报告 本期目录 | 过刊浏览 |
高温高CO2 压力下低合金钢P110SS在氯盐和甲酸盐溶液中腐蚀行为对比研究
罗铸1, 刘佳乐2,3, 魏安超1, 黄洪林1, 李鑫1, 于延钊2,3(), 张梦飞2,3
1 中海石油(中国)有限公司海南分公司 海口 570100
2 中国石油大学(北京) 北京 102249
3 油气装备材料失效与腐蚀防护北京市重点实验室 北京 102249
Corrosion Behavior of Low Alloy Steel P110SS in Chloride and Formate Solutions at High Temperature and High CO2 Pressure
LUO Zhu1, LIU Jiale2,3, WEI Anchao1, HUANG Honglin1, LI Xin1, YU Yanzhao2,3(), ZHANG Mengfei2,3
1 Hainan Branch, CNOOC (China) Corporation Limitded, Haikou 570100, China
2 China University of Petroleum (Beijing), Beijing 102249, China
3 Beijing Key Laboratory of Material Failure and Corrosion Protection for Oil and Gas Equipment, Beijing 102249, China
引用本文:

罗铸, 刘佳乐, 魏安超, 黄洪林, 李鑫, 于延钊, 张梦飞. 高温高CO2 压力下低合金钢P110SS在氯盐和甲酸盐溶液中腐蚀行为对比研究[J]. 中国腐蚀与防护学报, 2025, 45(5): 1390-1398.
Zhu LUO, Jiale LIU, Anchao WEI, Honglin HUANG, Xin LI, Yanzhao YU, Mengfei ZHANG. Corrosion Behavior of Low Alloy Steel P110SS in Chloride and Formate Solutions at High Temperature and High CO2 Pressure[J]. Journal of Chinese Society for Corrosion and protection, 2025, 45(5): 1390-1398.

全文: PDF(22573 KB)   HTML
摘要: 

研究了高温高CO2压力下低合金钢P110SS分别在NaCl溶液和HCOOK溶液中的腐蚀行为,采用扫描电镜(SEM)、激光扫描共聚焦(CLSM)、X射线衍射仪(XRD)和透射电镜(TEM)等手段分析腐蚀产物的微观形貌、类型和生长形态等。结果表明:当处于相同CO2压力的HCOOK溶液中时,150 ℃时P110SS钢的腐蚀速率是NaCl溶液中的10.6倍,180 ℃时为3.3倍。两种环境下的腐蚀产物存在明显差异。NaCl溶液中形成的FeCO3为菱形块状,无明确的生长优势方向,在基体表面致密堆积,保护性较好。HCOOK溶液中的FeCO3则呈“花簇”状,“花枝”由三片“羽片”沿“羽轴”向外生长,均匀分布,优势生长面为(018)、(116)和(0012),由于结构松散,保护性差,腐蚀速率较高。

关键词 甲酸钾FeCO3腐蚀产物微观形貌优势生长面    
Abstract

The corrosion behavior of low alloy steel P110SS in NaCl and HCOOK solutions in high temperature and high-pressure CO2 atmospheres is studied via high temperature and high-pressure autoclave. While the corrosion morphology and corrosion type, the composition and phase constituents of corrosion products were characterized by means of scanning electron microscopy (SEM), confocal laser scanning microscope (CLSM), X-ray diffractometer (XRD), and transmission electron microscopy (TEM). The results show that when setting the same CO2 pressure, the corrosion rate of P110SS in HCOOK solution at 150 ℃ is 10.6 times that in NaCl solution and 3.3 times at 180 ℃. There are obvious differences in the corrosion products of P110SS in the two solutions. The final corrosion product formed in NaCl solution is FeCO3, which has a rhombic block crystal morphology, no clear dominant growth direction, and is densely accumulated on the substrate surface. Therefore, it has a good ability to protect the substrate from further corrosion. The final corrosion product formed in the HCOOK solution is FeCO3, but the difference is that its crystal morphology is in the shape of a "flower cluster", in which the "flower branches" are evenly distributed from three "pinnae" growing outward along the "pinnae axis", with dominant growth planes of (018), (116), and (0012). However, the corrosion scale has a loose structure, so the protection is poor and the corrosion rate is high.

Key wordspotassium carbonate    FeCO3 corrosion product    microstructure    dominant growth surface
收稿日期: 2024-09-11      32134.14.1005.4537.2024.391
ZTFLH:  TG174.1  
基金资助:中海油集团公司“十四五”重大科技项目(KJGG2021-0800)
通讯作者: 于延钊,E-mail:yuyanzhao0328@126.com.cn,研究方向为油气田腐蚀与防护
Corresponding author: YU Yanzhao, E-mail: yuyanzhao0328@126.com.cn
作者简介: 罗 铸,男,1992年生,工程师
图1  P110SS钢在不同温度、不同溶液中浸泡5 d后的腐蚀速率
图2  P110SS钢在不同温度、不同溶液中浸泡5 d后的SEM图
图3  P110SS钢在不同温度、不同溶液中浸泡5 d后去除腐蚀产物后的SEM图
图4  P110SS钢在不同温度、不同溶液中浸泡5 d后去除腐蚀产物后的CLSM图
图5  P110SS钢在不同温度、不同溶液中浸泡5 d后的截面SEM像
图6  P110SS钢在不同温度、不同溶液中浸泡5 d后腐蚀产物的XRD谱
图7  P110SS钢在150 ℃下NaCl、180 ℃下HCOOK溶液中浸泡5 d后腐蚀产物的TEM图和选区电子衍射
图8  P110SS钢在含CO2的NaCl溶液和HCOOK溶液中的腐蚀产物膜结构示意图
[1] Zhao G X, Yan M L, Lu M X, et al. Advances in research of CO2 corrosion in oil and gas industry [J]. Corros. Prot., 1988, 19: 51
[1] 赵国仙, 严密林, 路民旭 等. 石油天然气工业中CO2腐蚀的研究进展 [J]. 腐蚀与防护, 1988, 19: 51
[2] Nešić S. Key issues related to modelling of internal corrosion of oil and gas pipelines-A review [J]. Corros. Sci., 2007, 49: 4308
[3] De Waard C, Milliams D E. Carbonic acid corrosion of steel [J]. Corrosion, 1975, 31: 177
[4] Chen C F. Research on electrochemical behavior and corrosion scale characteristics of CO2 corrosion for tubing and casing steel [D]. Xi'an: Northwestern Polytechnical University, 2002
[4] 陈长风. 油套管钢CO2腐蚀电化学行为与腐蚀产物膜特性研究 [D]. 西安: 西北工业大学, 2002
[5] Wan H X, Liu C L, Wang Z A, et al. Corrosion behavior of P110S oil casing steel in sulfur containing environment [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 371
[5] 万红霞, 刘重麟, 王子安 等. P110S油套管在微含硫环境中的腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2023, 43: 371
doi: 10.11902/1005.4537.2022.126
[6] Xing X S, Fan B T, Zhu X Y, et al. Corrosion characteristics of P110SS casing steel for ultra-deep well in artificial formation water with low H2S and high CO2 content [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 611
[6] 幸雪松, 范白涛, 朱新宇 等. 低H2S和高CO2分压下超深井用P110SS油套管钢腐蚀特征研究 [J]. 中国腐蚀与防护学报, 2023, 43: 611
doi: 10.11902/1005.4537.2022.225
[7] Liu Y, Xu L N, Lu M X, et al. Corrosion mechanism of 13Cr stainless steel in completion fluid of high temperature and high concentration bromine salt [J]. Appl. Surf. Sci., 2014, 314: 768
[8] Son A J, Kuzlik M S. Corrosion inhibitor for heavy brines [P]. US Pat, 4539122A, 1985
[9] Liu W Y, Shi T H, Li S, et al. Failure analysis of a fracture tubing used in the formate annulus protection fluid [J]. Eng. Fail. Anal., 2019, 95: 248
[10] Liu K B, Zhou W M, Zhi T C, et al. Stress corrosion cracking behavior of super 13Cr stainless steel in CO2-containing CaCl2 completion fluid [J]. Chem. Eng. Oil Gas, 2007, 36: 222
[10] 刘克斌, 周伟民, 植田昌克 等. 超级13Cr钢在含CO2的CaCl2完井液中应力腐蚀开裂行为 [J]. 石油与天然气化工, 2007, 36: 222
[11] Yang L T, Zhang J J, Li F, et al. Study on corrosion behavior of P110S steel in CO2-H2S-saturated solution [J]. Int. J. Electrochem. Sci., 2022, 17: 22018
[12] Bungert D, Maikranz S, Sundermann R, et al. The evolution and application of formate brines in high-temperature/high-pressure operations [A]. SPE/IADC Drilling Conference and Exhibition [C]. New Orleans, 2000: SPE-59191-MS
[13] Zang W W, Xu T T, Zhao Z J, et al. Physical and chemical properties of cesium and other formate brines as drilling/completion fluids [J]. Oilfield Chem., 2010, 27: 100
[13] 臧伟伟, 徐同台, 赵忠举 等. 甲酸铯及其他甲酸盐水溶液的物理化学特性 [J]. 油田化学, 2010, 27: 100
[14] Zeng Q L. Formate drilling fluid system application [D]. Xi'an: Xi'an Shiyou University, 2010
[14] 曾庆林. 甲酸盐钻井液体系的应用 [D]. 西安: 西安石油大学, 2010
[15] Zeng D Z, Chen R, Zhang Z, et al. Research on stress corrosion sensitivity of C110 casing in wellbore protection fluid [J]. Energy Procedia, 2012, 16: 816
[16] Zhu S D, Wei J F, Bai Z Q, et al. Failure analysis of P110 tubing string in the ultra-deep oil well [J]. Eng. Fail. Anal., 2011, 18: 950
[17] Zhu S D, Wei J F, Cai R, et al. Corrosion failure analysis of high strength grade super 13Cr-110 tubing string [J]. Eng. Fail. Anal., 2011, 18: 2222
[18] Yue X Q, Zhang L, Ma L, et al. Influence of a small velocity variation on the evolution of the corrosion products and corrosion behaviour of super 13Cr SS in a geothermal CO2 containing environment [J]. Corros. Sci., 2021, 178: 108983
[19] Zhao Y, Chang L M, Zhang T, et al. Effect of the flow velocity on the corrosion behavior of UNS S41426 stainless steel in the extremely aggressive oilfield environment for the Tarim area [J]. Corrosion, 2020, 76: 654
[20] Sánchez-Tovar R, Montañés M T, García-Antón J. Effect of the micro-plasma arc welding technique on the microstructure and pitting corrosion of AISI 316L stainless steels in heavy LiBr brines [J]. Corros. Sci., 2011, 53: 2598
[21] Mou L M, Bian T T, Zhang S H, et al. Understanding the interaction mechanism of chloride ions and carbon dioxide towards corrosion of 3Cr steel [J]. Vacuum, 2023, 217: 112571
[22] Pfennig A, Wiegand R, Wolf M, et al. Corrosion and corrosion fatigue of AISI 420C (X46Cr13) at 60 ℃ in CO2-saturated artificial geothermal brine [J]. Corros. Sci., 2013, 68: 134
[23] Huang Z J, Wang B, Yang Z W, et al. Study on the corrosion behavior of P110S in high-temperature CaCl2 completion fluid [J]. Mater. Prot., 2021, 54(6): 83
[23] 黄知娟, 王 贝, 杨志文 等. P110S在高温CaCl2完井液中的腐蚀规律研究 [J]. 材料保护, 2021, 54(6): 83
[24] Leth-Olsen H. CO2 corrosion of steel in formate brines for well applications [A]. Corrosion 2004 [C]. New Orleans, 2004: 1
[25] Li W L, Zhang H J, Du C C, et al. Effect of CO2 on the corrosion behavior of C110 carbon steel in formate solution environment [J]. Mater. Prot., 2018, 51(10): 47
[25] 李渭亮, 张慧娟, 杜春朝 等. CO2渗入对C110管柱在甲酸盐完井液中腐蚀行为的影响 [J]. 材料保护, 2018, 51(10): 47
[26] Zhang Z, Zheng Y S, Li J, et al. Localized corrosion resistance of super 13Cr stainless steel in formate completion fluid containing CO2 [J]. Mater. Prot., 2018, 51(8): 26
[26] 张 智, 郑钰山, 李 晶 等. 含CO2甲酸盐完井液中超级13Cr不锈钢的局部腐蚀性能 [J]. 材料保护, 2018, 51(8): 26
[27] Yang X T, Lü X H, Xie J F, et al. Corrosion behavior of high strength 15Cr martensitic stainless steel in organic salt completion fluid [J]. Corros. Prot., 2018, 39: 901
[27] 杨向同, 吕祥鸿, 谢俊峰 等. 高强15Cr马氏体不锈钢在有机盐完井液中的腐蚀行为 [J]. 腐蚀与防护, 2018, 39: 901
[28] Zhao G X, Du H B, Qian J, et al. Corrosion behavior of 2507 super duplex stainless in potassium formate completion fluid [J]. Corros. Prot., 2021, 42(10): 54
[28] 赵国仙, 杜航波, 钱 炯 等. 2507超级双相不锈钢在甲酸盐完井液中的腐蚀行为 [J]. 腐蚀与防护, 2021, 42(10): 54
[29] Zhao G X, Gao F. Anti-corrosion behavior of TC4 alloy in organic salt completion fluid [J]. Drill. Fluid Completion Fluid, 2020, 37: 264
[29] 赵国仙, 高 飞. TC4钛合金在有机盐完井液中的腐蚀性能 [J]. 钻井液与完井液, 2020, 37: 264
[30] Yue X Q, Huang L Y, Qu Z H, et al. Formation and evolution of the corrosion scales on super 13Cr stainless steel in a formate completion fluid with aggressive substances [J]. Front. Mater., 2022, 8: 802136
[31] Sun Q, Chen C F, Zhao X, et al. Ion-selectivity of iron sulfides and their effect on H2S corrosion [J]. Corros. Sci., 2019, 158: 108085
[32] Dong Y G, Chai Z G, Liu Q L, et al. Discussion on corrosion of ground equipment in oil and gas field from carbon dioxide [J]. Inner Mongolia Petrochem. Ind., 2019, 45(2): 65
[32] 董艳国, 柴治国, 刘秋兰 等. 二氧化碳对油气田地面设备的腐蚀探讨 [J]. 内蒙古石油化工, 2019, 45(2): 65
[33] Zhu K H, Liu Y, Su N, et al. Behavior pattern and research progress of carbon dioxide corrosion in oil well [J]. Total Corros. Control, 2013, 27(10): 23
[33] 朱克华, 刘 云, 苏 娜 等. 油井二氧化碳腐蚀行为规律及研究进展 [J]. 全面腐蚀控制, 2013, 27(10): 23
[34] Liu G S, Wang W J, Zhou P, et al. Corrosion behavior of casing steels 13Cr and N80 during sequestration in an impure carbon dioxide environment [J]. J. Chin. Soc. Corros. Prot., 2024, 44: 1200
[34] 刘广胜, 王卫军, 周 佩 等. 含杂CO2封存条件下13Cr和N80套管钢腐蚀规律研究 [J]. 中国腐蚀与防护学报, 2024, 44: 1200
doi: 10.11902/1005.4537.2023.322
[35] Li H X, Li D P, Zhang L, et al. Fundamental aspects of the corrosion of N80 steel in a formation water system under high CO2 partial pressure at 100 ℃ [J]. RSC Adv., 2019, 9: 11641
[36] Li X P, Zhao Y, Qi W L, et al. Effect of extremely aggressive environment on the nature of corrosion scales of HP-13Cr stainless steel [J]. Appl. Surf. Sci., 2019, 469: 146
[37] Zhang G A, Cheng Y F. On the fundamentals of electrochemical corrosion of X65 steel in CO2-containing formation water in the presence of acetic acid in petroleum production [J]. Corros. Sci., 2009, 51: 87
[38] Dong L J, Zhang X L, Li Y F, et al. Effect of thiosulphate/H2S on crevice corrosion behaviour of P110 carbon steel in CO2-saturated solution [J]. Corros. Eng. Sci. Technol., 2020, 55: 253
[1] 江杰, 姜建军, 杨丽景, 雷步芳, 赵宇, 林建强, 宋振纶. 烧结NdFeB表面Zn-Al涂层制备及耐腐蚀机理研究[J]. 中国腐蚀与防护学报, 2023, 43(1): 104-110.
[2] 魏欢欢, 郑东东, 陈晨, 张大伟, 王凯励. Q690高强钢在模拟海洋浪溅区环境下耐蚀性能研究[J]. 中国腐蚀与防护学报, 2023, 43(1): 186-190.
[3] 刘宏宇, 张喜庆, 滕莹雪, 李胜利. 含铜低碳钢在海洋环境下的耐蚀和防污性能的研究[J]. 中国腐蚀与防护学报, 2021, 41(5): 679-685.
[4] 胡露露, 赵旭阳, 刘盼, 吴芳芳, 张鉴清, 冷文华, 曹发和. 交流电场与液膜厚度对A6082-T6铝合金腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2020, 40(4): 342-350.
[5] 林修洲, 杨丽, 梅拥军, 郑兴文, 罗淑文, 崔学军. 飞机起落架镀镉4130钢在甲酸钾溶液薄液膜下腐蚀电化学行为研究[J]. 中国腐蚀与防护学报, 2017, 37(6): 567-574.
[6] 崔学军, 白成波, 朱一波, 闵虹云, 王荣, 林修洲. Mn(NO3)2/Na2MoO4对AZ31B镁合金表面磷化膜微观形貌及耐蚀性的影响[J]. 中国腐蚀与防护学报, 2014, 34(5): 477-482.
[7] 王刚,金平,谭晓明,王德. 海洋环境下7B04铝合金腐蚀损伤演化规律研究[J]. 中国腐蚀与防护学报, 2012, 32(4): 338-342.
[8] 钟萍,李健. 聚脲涂层体系在混凝土表面的附着性能研究[J]. 中国腐蚀与防护学报, 2011, 31(5): 348-355.