Please wait a minute...
中国腐蚀与防护学报  2025, Vol. 45 Issue (4): 939-946     CSTR: 32134.14.1005.4537.2025.066      DOI: 10.11902/1005.4537.2025.066
  研究报告 本期目录 | 过刊浏览 |
酸洗工艺对不同锡量二次冷轧镀锡板耐蚀性能的影响
周谦永1, 赖漾2, 李谦2,3()
1 宝山钢铁股份有限公司冷轧厂 上海 200941
2 上海大学材料科学与工程学院 省部共建高品质特殊钢冶金与制备国家重点实验室 上海 200444
3 重庆大学材料科学与工程学院 国家镁合金材料工程技术研究中心 国家先进铸造技术重点实验室 重庆 400044
Effect of Pickling Process on Corrosion Resistance of Double Cold-reduced Tinplate with Different Tin Coating Masses
ZHOU Qianyong1, LAI Yang2, LI Qian2,3()
1 Cold Rolling Mill, Baoshan Iron and Steel Co., Ltd., Shanghai 200941, China
2 School of Materials Science and Engineering & State Key Laboratory of Advanced Special Steel, Shanghai University, Shanghai 200444, China
3 College of Materials Science and Engineering & National Engineering Research Center for Magnesium Alloys & National Key Laboratory of Advanced Casting Technologies, Chongqing University, Chongqing 400044, China
引用本文:

周谦永, 赖漾, 李谦. 酸洗工艺对不同锡量二次冷轧镀锡板耐蚀性能的影响[J]. 中国腐蚀与防护学报, 2025, 45(4): 939-946.
Qianyong ZHOU, Yang LAI, Qian LI. Effect of Pickling Process on Corrosion Resistance of Double Cold-reduced Tinplate with Different Tin Coating Masses[J]. Journal of Chinese Society for Corrosion and protection, 2025, 45(4): 939-946.

全文: PDF(16421 KB)   HTML
摘要: 

酸洗工艺是镀锡板生产的关键步骤,其改变会影响镀锡板的腐蚀行为,随镀锡量的改变,该影响也随之变化。目前酸洗工艺与镀锡量对镀锡板腐蚀行为的耦合影响机制缺乏系统研究。本研究探讨了不同镀锡量下,电解酸洗与化学酸洗对镀锡板耐蚀性能的影响机制及区别。采用扫描电镜(SEM)、中性盐雾试验(NSS)以及电化学测试方法,对化学酸洗和电解酸洗工艺下不同镀锡量镀层耐蚀性能和微观组织进行了表征和分析。结果表明,随着镀锡量增加,镀层的致密性和完整性提高,改用化学酸洗工艺对镀锡板性能的负面影响逐渐减弱,在高镀锡量条件下化学酸洗能够提供与电解酸洗相近的耐蚀性能。

关键词 镀锡板酸洗耐蚀性能电化学性能    
Abstract

The pickling process is a crucial step in the production of tinplate, and alterations in process parameters can affect the corrosion behavior of tinplate, which varies with changes in the tin coating mass. Currently, there is a lack of systematic research on the coupled influence mechanism of the pickling process and tin coating mass on the corrosion behavior of tinplate. Herein, the influence of electrolytic pickling and chemical pickling on the corrosion resistance of tinplates with different tin coating mass was assessed by means of neutral salt spray (NSS) testing, electrochemical testing methods and scanning electron microscopy (SEM), in terms of the variation of corrosion resistance and microstructure of coatings with varying tin coating weights and pickling processes. The results indicate that as the tin coating mass increases, the negative impact of switching to a chemical pickling process on the properties of tinplate gradually diminishes, which may be ascribed to the improved coating microstructure and property with the increasing tin mass. Furthermore, in case of high tin coating mass, the tinplate being subjected to chemical pickling can provide corrosion resistance comparable with that being subjected to electrolytic pickling.

Key wordstinplate    pickling    corrosion resistance    electrochemical performance
收稿日期: 2025-02-25      32134.14.1005.4537.2025.066
ZTFLH:  TG174  
通讯作者: 李 谦,E-mail:cquliqian@cqu.edu.cn,研究方向为金属腐蚀与防护
Corresponding author: LI Qian, E-mail: cquliqian@cqu.edu.cn
作者简介: 周谦永,男,1981年生,硕士,工程师
图1  不同镀锡量的镀锡板经电解酸洗或化学酸洗后中性盐雾腐蚀不同时间后的宏观形貌
图2  经电解酸洗和化学酸洗工艺的不同镀锡量的镀锡板在中性盐雾实验过程中的失重曲线
图3  经电解酸洗或化学酸洗的不同镀锡量的镀锡板样品在3.5%NaCl水溶液中的动电位极化曲线
Coating mass / g·m-2φcorr / V (vs.SCE)Icorr / A·cm-2βa / V·dec-1βc / V·dec-1Rp / Ω·cm2
EP-1.1-0.461.86 × 10-80.060.139.87 × 105
CP-1.1-0.493.01 × 10-80.050.196.12 × 105
EP-5.6-0.525.69 × 10-90.200.339.60 × 106
CP-5.6-0.538.78 × 10-90.340.267.23 × 106
EP-11.2-0.576.79 × 10-90.240.429.68 × 106
CP-11.2-0.577.78 × 10-90.270.449.36 × 106
表1  动电位极化曲线的拟合电化学参数
图4  经电解酸洗或化学酸洗的不同镀锡量的镀锡板在3.5%NaCl水溶液中的电化学阻抗谱图
图5  EIS拟合等效电路模型图
Coating mass / g·m-2Rs / Ω·cm2Qm-Y0 / Ω-1·cm-2·s-n1Qm-nRm / Ω·cm2Qdl-Y0 / Ω-1·cm-2·s-n1Qdl-nRct / Ω·cm2
EP-1.18.176.62 × 10-60.774.21 × 1053.86 × 10-60.863.13 × 103
CP-1.110.551.03 × 10-50.781.39 × 1056.45 × 10-60.861.62 × 103
EP-5.67.329.35 × 10-60.904.98 × 1062.17 × 10-50.799.94 × 102
CP-5.68.637.28 × 10-60.892.31 × 1062.85 × 10-50.791.78 × 102
EP-11.212.348.21 × 10-60.884.63 × 1061.42 × 10-50.763.19 × 103
CP-11.26.768.62 × 10-60.893.59 × 1062.66 × 10-50.807.85 × 102
表2  图4中电化学阻抗谱的拟合电化学参数
图6  经电解酸洗或化学酸洗的不同镀锡量的镀锡板的SEM表面形貌及EDS元素面扫描
Coating mass / g·m-2EPCP
FeSnFeSn
1.167.7332.2779.0021.00
5.617.4482.5619.3880.62
11.23.5496.463.9096.10
表3  镀锡板表面元素含量的EDS分析结果
[1] Xia D H, Song S Z, Wang J H, et al. Research progress on corrosion mechanism of tinned steel sheet used for food parkaging [J]. J. Chin. Soc. Corros. Prot., 2017, 37: 513
[1] (夏大海, 宋诗哲, 王吉会 等. 食品包装用镀锡薄钢板的腐蚀机理研究进展 [J]. 中国腐蚀与防护学报, 2017, 37: 513)
doi: 10.11902/1005.4537.2016.225
[2] Dean R R, Thwaites C J. Tinplate and tin coating technology [J]. JOM, 1987, 39: 42
[3] Liu Z, Deng C M, Wei J S, et al. Fast evaluation of resistance to high temperature steam sterilization process for organic coating coated tinplate by electrochemical method [J]. J. Chin. Soc. Corros. Prot., 2024, 44: 883
[3] (刘 喆, 邓成满, 魏军胜 等. 涂覆有机涂层的镀锡薄钢板耐蒸煮性能电化学快速检测技术研究 [J]. 中国腐蚀与防护学报, 2024, 44: 883)
[4] Huang J G, Li N, Jiang L M, et al. Research and progress in the corrosion resistance of tinplate and its progress [J]. Electroplat. Pollut. Control, 2003, 23(6): 5
[4] (黄久贵, 李 宁, 蒋丽敏 等. 镀锡板耐蚀性研究及进展 [J]. 电镀与环保, 2003, 23(6): 5)
[5] Ma C, Zhou B, Xia D H, et al. In-situ study the corrosion degradation mechanism of tinplate in salty water by scanning electrochemical microscopy [J]. Russ. J. Electrochem., 2018, 54: 216
[6] Liu B Y, Wang Y W, Guan Y. A study of corrosion performance of tinplate with different tin coating thickness in H2SO4 solution [J]. Materialwiss. Werkstofftech., 2021, 52: 433
[7] Álvarez D, Collazo A, Nóvoa X R, et al. The anticorrosive properties of sol-gel films doped with hydrotalcite nanoparticles applied on tinplate [J]. Electrochim. Acta, 2014, 131: 137
[8] Awan G H, Ul Hasan F. The morphology of coating/substrate interface in hot-dip-aluminized steels [J]. Mater. Sci. Eng., 2008, 472A: 157
[9] Wang X D, Huang J G, Li J Z, et al. International and domestic development situation of tinplate steel [J]. Shanghai Met., 2008, 30(4): 45
[9] (王晓东, 黄久贵, 李建中 等. 国内外镀锡板生产发展状况 [J]. 上海金属, 2008, 30(4): 45)
[10] Huang X Q, Han J J, Li N, et al. Effects of weight loss character of black plate on corrosion resistance of tinplate [J]. Electroplat. Pollut. Control., 2004, 24(4): 7
[10] (黄兴桥, 韩家军, 李 宁 等. 原板酸洗失重性能对镀锡板耐蚀性的影响 [J]. 电镀与环保, 2004, 24(4): 7)
[11] Huang X Q, Li N, Jiang L M, et al. Effect of black plate on corrosion resistance of T5 tinplate [J]. J. Iron Steel Res. Int., 2006, 13: 59
[12] Dai W W. Analysis of influencing factors of lead content within tinplate surface by MSA solution [J]. Baosteel Technol., 2021, (4): 47
[12] (戴伟伟. MSA镀液体系下镀锡板面铅含量影响因素分析 [J]. 宝钢技术, 2021, (4): 47)
[13] Liu B, Li B H, Zheng Z, et al. Effect of electrochemical pickling of black plate on porosity of tin plate [J]. Electroplat. Finish., 2010, 29(1): 19
[13] (刘 彪, 李兵虎, 郑 振 等. 原板的电化学酸洗对镀锡板表面形貌及孔隙率的影响 [J]. 电镀与涂饰, 2010, 29(1): 19)
[14] Xia D H, Song S Z, Wang J H, et al. Corrosion behavior of tinplate in NaCl solution [J]. Trans. Nonferrous Met. Soc. China, 2012, 22: 717
[15] Li D Z, Conway P P, Liu C Q. Corrosion characterization of tin-lead and lead free solders in 3.5wt.%NaCl solution [J]. Corros. Sci., 2008, 50: 995
[16] Chen S, Xie L, Xue F. X-ray photoelectron spectroscopy investigation of commercial passivated tinplate surface layer [J]. Appl. Surf. Sci., 2013, 276: 454
[17] Caiazzo F C, Brambilla L, Montanari A, et al. Chemical and morphological characterization of commercial tinplate for food packaging [J]. Surf. Interface Anal., 2018, 50: 430
[18] Stern M, Geary A L. Electrochemical Polarization: I. A theoretical analysis of the shape of polarization curves [J]. J. Electrochem. Soc, 1957, 104: 56
[19] Song H, Fang Y, Wang Y Q, et al. Development and key process research of low tinplating steel plate [J]. Mater. Prot., 2019, 52(5): 102
[19] (宋 浩, 方 圆, 王雅晴 等. 低锡量镀锡板开发及关键工艺研究 [J]. 材料保护, 2019, 52(5): 102)
[20] Zhou D J, Wang J H, Gao Y, et al. Corrosion behavior of tinplate in NaCl solution under different temperature [J]. Int. J. Electrochem. Sci., 2017, 12: 192
[1] 张雄斌, 党恩, 于晓婧, 汤玉斐, 赵康. 油气田用马氏体不锈钢腐蚀性能研究现状与进展[J]. 中国腐蚀与防护学报, 2025, 45(4): 837-848.
[2] 陈宇强, 冉光林, 陆丁丁, 黄磊, 曾立英, 刘阳, 支倩. 循环强化对7075铝合金腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2025, 45(4): 1051-1060.
[3] 马晋遥, 董楠, 郭振森, 韩培德. B、Ce微合金化对S31254超级奥氏体不锈钢析出相及耐蚀性能的影响[J]. 中国腐蚀与防护学报, 2024, 44(6): 1610-1616.
[4] 程永贺, 付俊伟, 赵茂密, 沈云军. 高熵合金耐蚀性研究进展[J]. 中国腐蚀与防护学报, 2024, 44(5): 1100-1116.
[5] 王博, 安士忠, 郭俊卿, 纪运广, 李志强. 商用MB1MB8镁合金在NaCl溶液中的电化学性能[J]. 中国腐蚀与防护学报, 2024, 44(4): 1073-1080.
[6] 毛训聪, 陈乐平, 彭聪. Ca-P涂层和Sr-P涂层对脉冲磁场下凝固的Mg-Zn-Zr-Gd合金耐蚀性的影响[J]. 中国腐蚀与防护学报, 2023, 43(3): 647-655.
[7] 汪涵敏, 黄峰, 袁玮, 张佳伟, 王昕煜, 刘静. 新型Cu-Mo耐候钢在模拟海洋大气环境中的腐蚀行为[J]. 中国腐蚀与防护学报, 2023, 43(3): 507-515.
[8] 张小丽, 寻懋年, 梁小红, 张彩丽, 韩培德. 含Ce S31254超级奥氏体不锈钢析出相析出行为及耐蚀性[J]. 中国腐蚀与防护学报, 2023, 43(2): 384-390.
[9] 蒋芳芳, 云虹, 彭莉, 张依豪, 李卫顺, 代文静, 王保峰, 徐群杰. 原位聚合聚苯胺改性NiFe-LDH复合涂层的防护性能研究[J]. 中国腐蚀与防护学报, 2023, 43(2): 312-320.
[10] 阎竹, 张晨阳, 王立新, 袁国, 张元祥, 方烽, 王洋, 康健. 结构稳定性对Zr基非晶合金电化学腐蚀性能的影响[J]. 中国腐蚀与防护学报, 2022, 42(1): 79-84.
[11] 郎丰军, 黄峰, 徐进桥, 李利巍, 岳江波, 刘静. Mg处理X70级抗酸性海底管线钢 (X70MOS) 成分设计及耐蚀性能研究[J]. 中国腐蚀与防护学报, 2021, 41(5): 617-624.
[12] 张浩然, 吴鸿燕, 王善林, 左瑶, 陈玉华, 尹立孟. 含硫化物夹杂的铁基非晶合金点蚀规律[J]. 中国腐蚀与防护学报, 2021, 41(4): 477-486.
[13] 伊光辉, 郑大江, 宋光铃. 酸洗对316L不锈钢表面形貌、耐蚀性能及表面光学常数的影响[J]. 中国腐蚀与防护学报, 2021, 41(4): 461-468.
[14] 戴婷, 顾艳红, 高辉, 刘凯龙, 谢小辉, 焦向东. 水下摩擦螺柱焊接头在饱和CO2中的电化学性能[J]. 中国腐蚀与防护学报, 2021, 41(1): 87-95.
[15] 孙海静, 覃明, 李琳. 深海低溶解氧环境下Al-Zn-In-Mg-Ti牺牲阳极性能研究[J]. 中国腐蚀与防护学报, 2020, 40(6): 508-516.