Please wait a minute...
中国腐蚀与防护学报  2021, Vol. 41 Issue (5): 617-624    DOI: 10.11902/1005.4537.2020.213
  研究报告 本期目录 | 过刊浏览 |
Mg处理X70级抗酸性海底管线钢 (X70MOS) 成分设计及耐蚀性能研究
郎丰军1,2,3, 黄峰2,3(), 徐进桥3, 李利巍3, 岳江波3, 刘静1,2
1.武汉科技大学 省部共建耐火材料与冶金国家重点实验室 武汉 430081
2.武汉科技大学 湖北省海洋工程材料及服役安全工程技术研究中心 武汉 430081
3.宝钢股份中央研究院 武汉 430080
Composition Design and Corrosion Resistance of Mg Microallyed X70 Grade Acid Resistant Submarine Pipeline Steel (X70MOS)
LANG Fengjun1,2,3, HUANG Feng2,3(), XU Jinqiao3, LI Liwei3, YUE Jiangbo3, LIU Jing1,2
1.The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, China
2.Hubei Engineering Technology Research Center of Marine Materials and Service Safety, Wuhan University of Science and Technology, Wuhan 430081, China
3.Baosteel Central Research Institute, Wuhan 430080, China
全文: PDF(4874 KB)   HTML
摘要: 

利用OLI Analyzer Studio软件,模拟海底管线管内NACE A和管外3.5%NaCl腐蚀环境,计算合金元素添加量对X70海底管线钢腐蚀速率的影响规律。在保证X70海底管线钢力学性能前提下,设计成分并轧制含0.003%Mg和无Mg的X70MOS实验钢。运用电化学测试技术和NACE TM 0284-2016标准,研究和评估X70MOS实验钢和常规X70海底管线钢的耐蚀性能和抗HIC性能。结果表明,Mg处理钢在NACE A溶液中较无Mg处理钢、X70海底管线钢腐蚀速率分别降低14.3%和73.3%,在3.5%NaCl溶液中分别降低52.8%和80.4%。Mg处理钢HIC敏感性较无Mg处理钢、X70海底管线钢大大降低,满足NACE标准规定值。X70MOS钢研制中使用0.003% Mg处理不仅可以降低合金成本,而且具有提高耐蚀性和抗HIC性能作用。

关键词 X70MOS钢Mg处理成分设计耐蚀性能    
Abstract

The corrosion rate of X70 submarine pipeline steel with alloying element addition in the so called NACE A medium and 3.5%NaCl solution was calculated by means of OLI analyzer studio software in order to simulate the corrosion situation of inner side and outer side of the real pipeline in service. Under the premise of ensuring the mechanical properties of X70 submarine pipeline steel, experimental X70MOS steels without and with 0.003% Mg-addition were designed and rolled. Then their corrosion resistance and hydrogen induced cracking (HIC) susceptibility were studied via electrochemical techniques in accord with NACE TM 0284-2016 standard. The results showed that corrosion rate of X70MOS steel with Mg-addition was lower than both that without Mg-addition and X70 submarine pipeline steel by 14.3% and 73.3% respectively in NACE A solution, and decreased by 52.8% and 80.4% respectively in 3.5% NaCl solution. The HIC susceptibility of the Mg-alloyed experimental steel with finely dispersed inclusions was lower than that of X70MOS steel without Mg-addition and X70 submarine pipeline steel. The development of X70MOS steel with 0.003% Mg-addition can enhance the corrosion resistance of the designed steel.

Key wordsX70MOS steel    Mg-treatment    composition design    corrosion resistance
收稿日期: 2020-10-27     
ZTFLH:  TG174  
基金资助:国家自然科学基金(51871172);中央引导地方科技发展专项(2018ZYYD026)
通讯作者: 黄峰     E-mail: huangfeng@wust.edu.cn
Corresponding author: HUANG Feng     E-mail: huangfeng@wust.edu.cn
作者简介: 郎丰军,男,1984年生,博士生

引用本文:

郎丰军, 黄峰, 徐进桥, 李利巍, 岳江波, 刘静. Mg处理X70级抗酸性海底管线钢 (X70MOS) 成分设计及耐蚀性能研究[J]. 中国腐蚀与防护学报, 2021, 41(5): 617-624.
Fengjun LANG, Feng HUANG, Jinqiao XU, Liwei LI, Jiangbo YUE, Jing LIU. Composition Design and Corrosion Resistance of Mg Microallyed X70 Grade Acid Resistant Submarine Pipeline Steel (X70MOS). Journal of Chinese Society for Corrosion and protection, 2021, 41(5): 617-624.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2020.213      或      https://www.jcscp.org/CN/Y2021/V41/I5/617

图1  电化学测试系统
图2  试样尺寸 (mm) 及观察截面示意图
图3  合金元素添加量与X70海底管线钢腐蚀速率关系曲线
SampleCSiMnCuCrNiMoAlNb+V+TiMgFe
1#0.040.251.20---0.250.120.160.009≤0.10.003Bal.
2#0.060.230.960.340.460.160.320.017≤0.1---Bal.
3#0.060.241.540.020.310.010.0030.039≤0.1---Bal.
表1  3种钢主要化学成分
SampleStrength / MPaImpact energy -30 ℃ / JHardness HV10Bend
Rt0.5RmRt0.5 / Rm
1#5256370.83280207Pass
2#5076800.75275210Pass
3#5866510.90189229Pass
表2  3种钢力学性能
图4  3种钢金相组织及钢夹杂照片
图5  3种钢夹杂物类型、数量、尺寸统计
图6  3种钢在不同腐蚀介质中动电位极化曲线
SampleNACE A3.5%NaCl
ESCE / mVI / mA·cm-2V / mm·a-1ESCE / mVI / mA·cm-2V / mm·a-1
1#-5840.0660.772-6780.0080.094
2#-5850.0770.901-6880.0170.199
3#-6320.2472.890-6920.0410.480
表3  极化曲线Tafel活性区拟合参数及计算得腐蚀速率
图7  3种钢在不同腐蚀介质中的Nyquist曲线及拟合电路
SampleNACE A3.5%NaCl
Rs / Ω·cm-2Q / μF·cm-2nRp / Ω·cm-2L / H·cm-2RL / Ω·cm-2Rs / Ω·cm-2Q / μF·cm-2nRp / Ω·cm-2L / H·cm-2RL / Ω·cm-2
1#161350.8235215382397213150.811415105903709
2#162280.81287773825213440.821118121503756
3#162360.821905511195215000.84649195903957
表4  3种钢的Nyquist曲线拟合参数
图8  HIC试样宏观表面形貌
图9  氢鼓泡下截面形貌图及能谱图
1 Gan L J, Huang F, Zhao X Y, et al. Hydrogen trapping and hydrogen induced cracking of welded X100 pipeline steel in H2S environments [J]. Int. J. Hydrogen Energy, 2018, 43: 2293
2 Huang F, Liu J, Deng Z J, et al. Effect of microstructure and inclusions on hydrogen induced cracking susceptibility and hydrogen trapping efficiency of X120 pipeline steel [J]. Mater. Sci. Eng., 2010, 527A: 6997
3 Peng Z X, Liu J, Huang F, et al. Effect of submicron-scale MnS inclusions on hydrogen trapping and HIC susceptibility of X70 pipeline steels [J]. Steel Res. Int., 2018, 89: 1700566
4 Wei W R, Liang Y, Hou J, et al. Localization of steel pipe used for natural gas transportation in south china sea [J]. Welded Pipe Tube, 2015, 38(3): 24
4 魏伟荣, 梁羽, 侯静等. 南海深水天然气输送海底管线钢管的国产化 [J]. 焊管, 2015, 38(3): 24
5 Wu W, Liu Z Y, Li X G, et al. Electrochemical characteristic and stress corrosion behavior of API X70 high-strength pipeline steel under a simulated disbonded coating in an artificial seawater environment [J]. J. Electroanal. Chem., 2019, 845: 92
6 Zafar M N, Rihan R, Al-Hadhrami L. Evaluation of the corrosion resistance of SA-543 and X65 steels in emulsions containing H2S and CO2 using a novel emulsion flow loop [J]. Corros. Sci., 2015, 94: 275
7 Wu H B, Liu Y T, Wang L D, et al. Influence of Cr Content on microstructures and acid corrosion properties of X120 grade pipeline steel [J]. J. Mater. Eng., 2013, (9): 32
7 武会宾, 刘跃庭, 王立东等. Cr含量对X120级管线钢组织及耐酸性腐蚀性能的影响 [J]. 材料工程, 2013, (9): 32
8 Zhang C Y, Chen X Q, Chen D B, et al. Research of pitting susceptibility in low carbon steels and mechanism of pitting initiation [J]. J. Chin. Soc. Corros. Prot., 2001, 21: 265
8 张春亚, 陈学群, 陈德斌等. 不同低碳钢的点蚀诱发敏感性及诱发机理研究 [J]. 中国腐蚀与防护学报, 2001, 21: 265
9 Qu Y M, Huang F, Liu J, et al. Influence of microstructure on hydrogen induced cracks susceptibility and hydrogen trapping efficiency for X80 pipeline steel [J]. Chin. J. Mater. Res., 2010, 24: 508
9 曲炎淼, 黄峰, 刘静等. 显微组织对X80钢氢致裂纹敏感性和氢捕获效率的影响 [J]. 材料研究学报, 2010, 24: 508
10 Findley K O, O’Brien M K, Nako H. Critical assessment 17: mechanisms of hydrogen induced cracking in pipeline steels [J]. Mater. Sci. Technol, 2015, 31: 1673
11 Wang R Z, Yang J, Zhu K, et al. Comparison between the results of oxide metallurgy with Ca deoxidation and Mg deoxidation [J]. Steelmaking, 2016, 32(3): 50
11 王睿之, 杨健, 祝凯等. 钙脱氧和镁脱氧的氧化物冶金工艺效果对比 [J]. 炼钢, 2016, 32(3): 50
12 Kimura S, Nakajima K, Mizoguchi S. Behavior of alumina-magnesia complex inclusions and magnesia inclusions on the surface of molten low-carbon steels [J]. Metall. Mater. Trans., 2001, 32B: 79
13 Yang J, Yamasaki T, Kuwabara M. Behavior of inclusions in deoxidation process of molten steel with in situ produced Mg vapor [J]. ISIJ Int., 2007, 47: 699
14 Peng Z X, Liu J, Huang F, et al. Comparative study of non-metallic inclusions on the critical size for HIC initiation and its influence on hydrogen trapping [J]. Int. J. Hydrogen Energy, 2020, 45: 12616
15 Wang L W, Xin J C, Chen L J, et al. Influence of inclusions on initiation of pitting corrosion and stress corrosion cracking of X70 steel in near-neutral pH environment [J]. Corros. Sci., 2019, 147: 108
16 Huang F, Li X G, Liu J, et al. Hydrogen-induced cracking susceptibility and hydrogen trapping efficiency of different microstructure X80 pipeline steel [J]. J. Mater. Sci., 2011, 46: 715
[1] 张浩然, 吴鸿燕, 王善林, 左瑶, 陈玉华, 尹立孟. 含硫化物夹杂的铁基非晶合金点蚀规律[J]. 中国腐蚀与防护学报, 2021, 41(4): 477-486.
[2] 刘海霞, 黄峰, 袁玮, 胡骞, 刘静. 690 MPa级高强贝氏体钢在模拟乡村大气中的腐蚀行为[J]. 中国腐蚀与防护学报, 2020, 40(5): 416-424.
[3] 黄勇, 王善林, 王帅星, 龚玉兵, 柯黎明. 含硫化物夹杂铁基块体非晶合金在HCl溶液中的腐蚀行为[J]. 中国腐蚀与防护学报, 2018, 38(2): 203-209.
[4] 李广宇, 雷明凯. γΝ相在硼酸溶液中钝化膜的组成及其半导体特性研究[J]. 中国腐蚀与防护学报, 2018, 38(1): 47-53.
[5] 张新芳,欧孝通,刘雷,雷惊雷,李凌杰. 镁合金表面无机-有机杂化硅膜的制备及其防护性能研究[J]. 中国腐蚀与防护学报, 2017, 37(5): 435-443.
[6] 谭何灵,周成,刘希辉,曹国明,张菁. Cr对Q420钢在高盐度大气环境下耐蚀性的影响[J]. 中国腐蚀与防护学报, 2017, 37(3): 267-372.
[7] 徐相英,葛芳芳,李朋,舒瑞,黄峰,李谋成. 非晶Ti-B基涂层的力学和耐蚀性能研究[J]. 中国腐蚀与防护学报, 2016, 36(6): 573-579.
[8] 马旭,李全安,井晓天. 热处理对Mg-10Gd-2.5Nd-0.5Zr合金组织和耐蚀性能的影响[J]. 中国腐蚀与防护学报, 2016, 36(2): 143-149.
[9] 睢文杰,赵文杰,张星,秦立光,彭叔森,乌学东,薛群基. 铜合金表面巯基官能有机硅溶胶-凝胶涂层中TEOS含量对其防腐性能的影响[J]. 中国腐蚀与防护学报, 2016, 36(1): 52-58.
[10] 崔君军, 张雅静, 王琳琳, 陈晓刚, 张国志. 耐海水腐蚀球墨铸铁成分优化设计及其抗蚀性能[J]. 中国腐蚀与防护学报, 2014, 34(6): 537-543.
[11] 胡新芳, 李辛庚, 樊志彬, 王晓明, 王学刚. 新型Zn-22Al-Mg-Re合金涂层性能研究[J]. 中国腐蚀与防护学报, 2013, 33(6): 521-526.
[12] 王淑艳,夏永平 刘 莉. C3H8O3含量对AZ91D镁合金微弧氧化过程及膜层特性的影响[J]. 中国腐蚀与防护学报, 2013, 33(3): 235-240.
[13] 王应发,黄国胜,程旭东,李相波,邢路阔,郭娟,马焱. 热喷涂Zn-Ni复合涂层在海水中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2013, 33(1): 29-35.
[14] 肖正涛,李相波,王佳,黄国胜,周雄. 冷喷涂铬锆铜涂层在海水中的耐蚀性能[J]. 中国腐蚀与防护学报, 2012, 32(1): 18-22.
[15] 周贤良,朱敏,薛会斌,彭新元,叶志国. 热轧带钢的初期耐大气腐蚀性能[J]. 中国腐蚀与防护学报, 2011, 31(2): 139-144.