Please wait a minute...
中国腐蚀与防护学报  2024, Vol. 44 Issue (5): 1100-1116     CSTR: 32134.14.1005.4537.2023.391      DOI: 10.11902/1005.4537.2023.391
  综合评述 本期目录 | 过刊浏览 |
高熵合金耐蚀性研究进展
程永贺1,2, 付俊伟2,3(), 赵茂密2, 沈云军1
1 广西民族大学化学化工学院 南宁 530006
2 广西科学院 海洋腐蚀防护研究院 南宁 530007
3 中国科学院海洋研究所 海洋环境腐蚀与生物污损重点实验室 海洋关键材料重点实验室 青岛 266071
Research Progress on Corrosion Resistance of High-entropy Alloys
CHENG Yonghe1,2, FU Junwei2,3(), ZHAO Maomi2, SHEN Yunjun1
1 School of Chemistry and Chemical Engineering, Guangxi University for Nationalities, Nanning 530006, China
2 Marine Corrosion Protection Research Institute of Guangxi Academy of Sciences, Nanning 530007, China
3 Key Laboratory of Advanced Marine Materials, Key Laboratory of Marine Environmental Corrosion and Bio-fouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
引用本文:

程永贺, 付俊伟, 赵茂密, 沈云军. 高熵合金耐蚀性研究进展[J]. 中国腐蚀与防护学报, 2024, 44(5): 1100-1116.
Yonghe CHENG, Junwei FU, Maomi ZHAO, Yunjun SHEN. Research Progress on Corrosion Resistance of High-entropy Alloys[J]. Journal of Chinese Society for Corrosion and protection, 2024, 44(5): 1100-1116.

全文: PDF(17157 KB)   HTML
摘要: 

和传统合金材料相比,高熵合金具有更优异的耐腐蚀、高温耐磨损以及综合力学性能等,在一些苛刻环境下具有极大的潜在应用价值,因此受到了越来越多的关注。本文聚焦于高熵合金的耐蚀性能。首先,重点讨论了常用的合金元素对BCC、FCC、BCC + FCC和HCP晶体结构的高熵合金在NaCl、酸性溶液介质中耐蚀性能的影响规律。其次,简要说明了金属元素之间的相互作用对高熵合金耐蚀性能产生的影响。讨论了晶粒尺寸、位错密度和晶体结构等微观特征对高熵合金耐蚀性的影响规律,增大晶粒尺寸或减少位错密度,有助于提高其耐蚀性。最后,总结了几种改善高熵合金耐蚀性能的方法,如热处理、阳极处理和添加缓蚀剂等技术,并对高熵合金未来的发展提出了建议和展望。

关键词 高熵合金耐蚀性能苛刻环境微观组织合金元素    
Abstract

Compared with traditional alloys, high-entropy alloys display bettercorrosion resistance, high-temperature wear resistance and comprehensive mechanical properties. Thus, high-entropy alloys can find their applications in some harsh environments where traditional alloys may not satisfy the requirements. This work focuses on the corrosion resistance of high-entropy alloys. The influence of commonly used alloying elements on the corrosion resistance of high-entropy alloys with BCC, FCC, FCC+BCC and HCP crystal structures in sodium chloride and acidic solution media was discussed. The effect of the interaction between metal elements on corrosion resistance of high-entropy alloys was briefly explained. The influence of grain size, dislocation density, and crystal structure on the corrosion resistance of high-entropy alloys was also discussed. The results show that the corrosion resistance of high-entropy alloys can be improved by increasing grain size or reducing dislocation density. Several methods for improving the corrosion resistance of high-entropy alloys such as heat treatment and anodizing treatment, as well as application of corrosion inhibitor, were summarized. Finally, suggestions and prospects for the future development of high-entropy alloys were put forward.

Key wordshigh-entropy alloy    corrosion resistance    harsh environment    microstructure    alloy element
收稿日期: 2023-12-20      32134.14.1005.4537.2023.391
ZTFLH:  TG174.2  
基金资助:中国科学院海洋研究所启动经费项目(E12822101Q);广西重点研发计划(桂科AB23026059)
通讯作者: 付俊伟,E-mail: hitfujw@163.com,研究方向为金属材料的组织及性能控制、金属材料的腐蚀原理及防腐技术、高性能金属材料的设计及制备
Corresponding author: FU Junwei, E-mail: hitfujw@163.com
作者简介: 程永贺,女,1999年生,硕士生
图1  VEC与各种HEAs系统的FCC、BCC相稳定性之间的关系[37]
图2  在3.5%NaCl溶液中极化后Al2 - x CoCrFeNiTi xHEAs的表面形貌[42]
图3  铸态Al2-x CoCrFeNiTi x HEAs的Nyquist图、Bode图以及用于相应的等效电路图[42]
AlloyIcorr / A·cm-2Ecorr / mVSHEIpass / A·cm-2Epit / mVSHE
Al0.4CrFe1.5MnNi0.53.2 × 10-3-3400.8 × 10-51120
Al0.4CrFe1.5MnNi0.5Mo0.16.1 × 10-5-601.0 × 10-51120
304 stainless steel7.2 × 10-5-1600.7 × 10-51150
表1  3种合金在0.5 mol/L H2SO4溶液中的Ecorr, Icorr, Ipass和Epit值[48]
图4  Co x CrCuFeMnNi HEAs在3.5%NaCl溶液中的动电位极化曲线[53]
AlloyIcorrEcorrEpitVacr
A·cm-2mVSHEmVSHEmm·a-1
Co0.54.04 × 10-5-964-910.43
Co1.03.84 × 10-5-888-880.41
Co1.51.11 × 10-5-785-410.12
Co2.06.95 × 10-6-787190.07
表2  Co x CrCuFeMnNi HEAs在3.5%NaCl溶液中的耐蚀性能参数[53]
图5  FeCoCrNiMox合金在1 mol/L NaCl中极化600和1800 s后的阳极溶解形态的SEM和3D图像[57]
AlloyEcorr / mVSCEIcorr / A·cm-2Epit / mVSCEReference
Co0.5CrCuFeMnNi-9644.04 × 10-5-91[53]
Co1.0CrCuFeMnNi-8883.84 × 10-5-88[53]
Co1.5CrCuFeMnNi-7851.11 × 10-5-41[53]
Co2.0CrCuFeMnNi-7876.95 × 10-619[53]
Ni2CrFeMo0.1-1352.103 × 10-60.81[54]
Ni2CrFeMo0.2-1790.896 × 10-60.92[54]
Ni2CrFeMo0.3-1031.959 × 10-60.73[54]
Ni2CrFeMo0.4-1211.711 × 10-60.72[54]
Ni2CrFeMo0.5-1252.014 × 10-60.54[54]
Co1.5CrFeNi1.5Ti0.5-4405.7 × 10-70.33[55]
Co1.5CrFeNi1.5Ti0.5Mo0.1-3801.3 × 10-71.21[55]
Co1.5CrFeNi1.5Ti0.5Mo0.5-4902.0 × 10-71.16[55]
Co1.5CrFeNi1.5Ti0.5Mo0.8-5504.1 × 10-71.18[55]
FeCoNiCu-7860.949 × 10-6-[58]
FeCoNiCuSn0.02-8452.125 × 10-6-[58]
FeCoNiCuSn0.03-8533.233 × 10-6-[58]
FeCoNiCuSn0.04-7220.969 × 10-6-[58]
FeCoNiCuSn0.05-8511.354 × 10-6-[58]
FeCoNiCuSn0.07-8951.855 × 10-6-[58]
316L stainless steel-8755.068 × 10-5-[60]
430 stainless steel-5106.622-[61]
2205 stainless steel-3912.3-[62]
表3  FCC结构HEAs在3.5%NaCl溶液中的电化学参数
图6  Al x CoCrFeNi合金的BSE图像和EBSD相图[65,66]
图7  Al x CoCrFeNiCu HEAs在10%HNO3溶液中浸泡24 h后的腐蚀形貌[70]
AlloyEcorr / mVSCEIcorr / A·cm-2Epit / mVSCEReference

CrFeMoV

Al0.2CrFeMoV

Al0.6CrFeMoV

AlCrFeMoV

Al0.3CoCrFeNi

Al0.5CoCrFeNi

Al0.7CoCrFeNi

FeCoNiCr

FeCoNiCrCu0.5

FeCoNiCrCu1.0

CoCrFeNiMnAlCu0.2

CoCrFeNiMnAlCu0.4

CoCrFeNiMnAlCu0.6

CoCrFeNiMnAlCu0.8

FeCoNi

FeCoNiCr0.5

FeCoNiCr

Al2CrFeCoCuTi

Al2CrFeCoCuTiNi0.5

Al2CrFeCoCuTiNi1.0

Al2CrFeCoCuTiNi1.5

Al2CrFeCoCuTiNi2.0

-397

-410

-460

-307

-187

-220

-285

-460

-490

-530

-495

-383

-341

-360

-325

-391

-410

-870

-0.82

-0.65

-0.84

-0.85

1.17 × 10-7

0.77 × 10-7

3.28 × 10-7

0.82 × 10-7

0.25 × 10-7

0.64 × 10-7

1.03 × 10-7

1.23 × 10-6

1.08 × 10-7

0.93 × 10-7

2.07 × 10-5

2.46 × 10-6

1.17 × 10-6

3.05 × 10-6

3.589 × 10-6

2.359 × 10-6

7.054 × 10-6

2.6 × 10-4

3.3 × 10-4

2.6 × 10-4

2.2 × 10-4

2.3 × 10-4

992

1025

1004

993

460

290

70

310

900

800

-

-

-

-

499

722

311

-

-

-

-

-

[64]

[64]

[64]

[64]

[65, 66]

[65, 66]

[65, 66]

[35]

[35]

[35]

[71]

[71]

[71]

[71]

[73]

[73]

[73]

[78]

[78]

[78]

[78]

[78]

表4  FCC + BCC结构HEAs在3.5%NaCl溶液中的电化学参数
AlloySolutionEcorr / mVSCEIcorr / A·cm-2Eb / mVSCEReference
CrFe1.5MnNi0.50.5 mol/L H2SO4-2296.86 × 10-41227[69]
Al0.3CrFe1.5MnNi0.50.5 mol/L H2SO4-1942.39 × 10-31176[69]
Al0.5CrFe1.5MnNi0.50.5 mol/L H2SO4-2065.08 × 10-31114[69]
304 stainless steel0.5 mol/L H2SO4-1867.45 × 10-51178[69]
Al0.5CoCrFeNiCu10% (mass fraction) HNO3-2475.732 × 10-5-[70]
Al1.0CoCrFeNiCu10% (mass fraction) HNO3-2352.858 × 10-5-[70]
Al1.5CoCrFeNiCu10% (mass fraction) HNO3-4494.171 × 10-5-[70]
Al2.0CoCrFeNiCu10% (mass fraction) HNO3-3134.258 × 10-5-[70]
CuCr2Fe2Ni2Mn21 mol/L H2SO4-7302.09 × 10-6-[72]
Cu2Cr2Fe2Ni2Mn21 mol/L H2SO4-9004.02 × 10-6-[72]
FeNiCu0.5Ti0.50.5 mol/L H2SO4-3304.000 × 10-4-[74]
Cr0.3FeNiCu0.5Ti0.50.5 mol/L H2SO4-2224.967 × 10-6794[74]
Cr0.5FeNiCu0.5Ti0.50.5 mol/L H2SO4-2447.327 × 10-7756[74]
Cr0.7FeNiCu0.5Ti0.50.5 mol/L H2SO4-1815.455 × 10-7795[74]
Cr0.9FeNiCu0.5Ti0.50.5 mol/L H2SO4-2243.253 × 10-7705[74]
Cr1.2FeNiCu0.5Ti0.50.5 mol/L H2SO4-1858.822 ×10-7805[74]
表5  FCC + BCC结构HEAs在酸性溶液中的电化学参数
Alloy

Total area S

cm2

Corrosion time T

h

Material density D kg·m-3

Mass loss M

g

Corrosion rate R

10-3 mm·s-1

CrFeCoNiTi0.55.467240067210.0032.980
CrFeCoNiTi1.04.612240073030.0011.084
表6  CrFeCoNiTi x 在海水中的腐蚀速率[90]
1 Li H, Zhang L Y, Zhang B Y, et al. Microstructure characterization and mechanical properties of stainless steel clad plate [J]. Materials, 2019, 12: 509
2 Peng Z C, Zheng Z B, Wang X Q, et al. The microstructure effect on fatigue and dwell-fatigue in a nickel-based superalloy [J]. Intermetallics, 2022, 151: 107740
3 Zhao P P, Song Y W, Dong K H, et al. Effect of passive film on the galvanic corrosion of titanium alloy Ti60 coupled to copper alloy H62 [J]. Mater. Corros., 2019, 70: 1745
4 Yeh J W, Chen S K, Lin S J, et al. Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes [J]. Adv. Eng. Mater., 2004, 6: 299
5 Miracle D B, Senkov O N. A critical review of high entropy alloys and related concepts [J]. Acta Mater., 2017, 122: 448
6 Ye Y F, Wang Q, Lu J, et al. High-entropy alloy: challenges and prospects [J]. Mater. Today, 2016, 19: 349
7 Miracle D, Majumdar B, Wertz K, et al. New strategies and tests to accelerate discovery and development of multi-principal element structural alloys [J]. Scr. Mater., 2017, 127: 195
8 Senkov O N, Miller J D, Miracle D B, et al. Accelerated exploration of multi-principal element alloys with solid solution phases [J]. Nat. Commun., 2015, 6: 6529
doi: 10.1038/ncomms7529 pmid: 25739749
9 Ikeda Y, Grabowski B, Körmann F. Ab initio phase stabilities and mechanical properties of multicomponent alloys: A comprehensive review for high entropy alloys and compositionally complex alloys [J]. Mater. Charact., 2019, 147: 464
doi: 10.1016/j.matchar.2018.06.019
10 Gao M C, Zhang B, Guo S M, et al. High-entropy alloys in hexagonal close-packed structure [J]. Metall. Mater. Trans., 2016, 47A: 3322
11 Fu Y, Li J, Luo H, et al. Recent advances on environmental corrosion behavior and mechanism of high-entropy alloys [J]. J. Mater. Sci. Technol., 2021, 80: 217
doi: 10.1016/j.jmst.2020.11.044
12 Varalakshmi S, Rao G A, Kamaraj M, et al. Hot consolidation and mechanical properties of nanocrystalline equiatomic AlFeTiCrZnCu high entropy alloy after mechanical alloying [J]. J. Mater. Sci., 2010, 45: 5158
13 Qiu Y, Thomas S, Gibson M A, et al. Corrosion of high entropy alloys [J]. npj Mater. Degrad., 2017, 1: 15
14 Senkov O N, Scott J M, Senkova S V, et al. Microstructure and elevated temperature properties of a refractory TaNbHfZrTi alloy [J]. J. Mater. Sci., 2012, 47: 4062
15 Nascimento C B, Donatus U, Ríos C T, et al. A review on corrosion of high entropy alloys: exploring the interplay between corrosion properties, alloy composition, passive film stability and materials selection [J]. Mater. Res., 2022, 25: e20210442
16 Geetha M, Singh A K, Asokamani R, et al. Ti based biomaterials, the ultimate choice for orthopaedic implants-A review [J]. Prog. Mater. Sci., 2009, 54: 397
17 Long M, Rack H J. Titanium alloys in total joint replacement—a materials science perspective [J]. Biomaterials, 1998, 19: 1621
doi: 10.1016/s0142-9612(97)00146-4 pmid: 9839998
18 Niinomi M. Recent metallic materials for biomedical applications [J]. Metall. Mater. Trans., 2002, 33A: 477
19 Yang W, Liu Y, Pang S J, et al. Bio-corrosion behavior and in vitro biocompatibility of equimolar TiZrHfNbTa high-entropy alloy [J]. Intermetallics, 2020, 124: 106845
20 Senkov O N, Scott J M, Senkova S V, et al. Microstructure and room temperature properties of a high-entropy TaNbHfZrTi alloy [J]. J. Alloy. Compd., 2011, 509: 6043
21 Dirras G, Lilensten L, Djemia P, et al. Elastic and plastic properties of as-cast equimolar TiHfZrTaNb high-entropy alloy [J]. Mater. Sci. Eng., 2016, 654A: 30
22 Tüten N, Canadinc D, Motallebzadeh A, et al. Microstructure and tribological properties of TiTaHfNbZr high entropy alloy coatings deposited on Ti-6Al-4V substrates [J]. Intermetallics, 2019, 105: 99
23 Hua N B, Wang W J, Wang Q T, et al. Mechanical, corrosion, and wear properties of biomedical Ti-Zr-Nb-Ta-Mo high entropy alloys [J]. J. Alloy. Compd., 2021, 861: 157997
24 Evans A G, He M Y, Suzuki A, et al. A mechanism governing oxidation-assisted low-cycle fatigue of superalloys [J]. Acta Mater., 2009, 57: 2969
25 Tong J, Dalby S, Byrne J, et al. Creep, fatigue and oxidation in crack growth in advanced nickel base superalloys [J]. Int. J. Fatigue, 2001, 23: 897
26 Eliaz N, Shemesh G, Latanision R M. Hot corrosion in gas turbine components [J]. Eng. Fail. Anal., 2002, 9: 31
27 Tsao T K, Yeh A C, Kuo C M, et al. High temperature oxidation and corrosion properties of high entropy superalloys [J]. Entropy, 2016, 18: 62
28 Gorr B, Müller F, Azim M, et al. High-temperature oxidation behavior of refractory high-entropy alloys: effect of alloy composition [J]. Oxid. Met., 2017, 88: 339
29 He F, Wang Z J, Wu Q F, et al. Phase separation of metastable CoCrFeNi high entropy alloy at intermediate temperatures [J]. Scr. Mater., 2017, 126: 15
30 Wu Z, Bei H, Otto F, et al. Recovery, recrystallization, grain growth and phase stability of a family of FCC-structured multi-component equiatomic solid solution alloys [J]. Intermetallics, 2014, 46: 131
31 Senkov O N, Wilks G B, Scott J M, et al. Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys [J]. Intermetallics, 2011, 19: 698
32 Wang X Z, Wang Y H, Yu J B, et al. A brief review about perspective and properties of high-entropy alloys [J]. J. Netshape Form. Eng., 2022, 14(11): 73
32 王先珍, 王一涵, 俞嘉彬 等. 高熵合金性能特点与应用展望 [J]. 精密成形工程, 2022, 14(11): 73
33 Gromov V E, Shlyarova Y A, Konovalov S V, et al. Application of high-entropy alloys [J]. Steel Transl., 2021, 51: 700
34 Liang H, Qiao D X, Miao J W, et al. Anomalous microstructure and tribological evaluation of AlCrFeNiW0.2Ti0.5 high-entropy alloy coating manufactured by laser cladding in seawater [J]. J. Mater. Sci. Technol., 2021, 85: 224
doi: 10.1016/j.jmst.2020.12.050
35 Hsu Y J, Chiang W C, Wu J K. Corrosion behavior of FeCoNiCrCu x high-entropy alloys in 3.5% sodium chloride solution [J]. Mater. Chem. Phys., 2005, 92: 112
36 Zhang Y, Zhou Y J, Lin J P, et al. Solid-solution phase formation rules for multi-component alloys [J]. Adv. Eng. Mater., 2008, 10: 534
37 Guo S, Ng C, Lu J, et al. Effect of valence electron concentration on stability of FCC or BCC phase in high entropy alloys [J]. J. Appl. Phys., 2011, 109: 103505
38 Guo S, Liu C T. Phase stability in high entropy alloys: Formation of solid-solution phase or amorphous phase [J]. Prog. Nat. Sci.: Mater. Int., 2011, 21: 433
39 Muangtong P, Rodchanarowan A, Chaysuwan D, et al. The corrosion behaviour of CoCrFeNi-x (x = Cu, Al, Sn) high entropy alloy systems in chloride solution [J]. Corros. Sci., 2020, 172: 108740
40 Zhang B, Wang J, Wu B, et al. Unmasking chloride attack on the passive film of metals [J]. Nat. Commun., 2018, 9: 2559
doi: 10.1038/s41467-018-04942-x pmid: 29967353
41 Wang F J, Zhang Y, Chen G L, et al. Cooling rate and size effect on the microstructure and mechanical properties of AlCoCrFeNi high entropy alloy [J]. J. Eng. Mater. Technol., 2009, 131: 034501
42 Zhao Y, Wang M L, Cui H Z, et al. Effects of Ti-to-Al ratios on the phases, microstructures, mechanical properties, and corrosion resistance of Al2-xCoCrFeNiTix high-entropy alloys [J]. J. Alloy. Compd., 2019, 805: 585
43 Yu Y, Wang J, Li J S, et al. Characterization of BCC phases in AlCoCrFeNiTi x high entropy alloys [J]. Mater. Lett., 2015, 138: 78
44 Liu L, Li Y, Wang F H. Influence of micro-structure on corrosion behavior of a Ni-based superalloy in 3.5% NaCl [J]. Electrochim. Acta, 2007, 52: 7193
45 Liu J, Liu H, Chen P J, et al. Microstructural characterization and corrosion behaviour of AlCoCrFeNiTix high-entropy alloy coatings fabricated by laser cladding [J]. Surf. Coat. Technol., 2019, 361: 63
46 Zhou Y J, Zhang Y, Wang Y L, et al. Solid solution alloys of AlCoCrFeNiTi x with excellent room-temperature mechanical properties [J]. Appl. Phys. Lett., 2007, 90: 181904
47 Wang X F, Zhang Y, Qiao Y, et al. Novel microstructure and properties of multicomponent CoCrCuFeNiTi x alloys [J]. Intermetallics, 2007, 15: 357
48 Hsu W C, Kao W P, Yeh J W, et al. Effect of Mo on the mechanical and corrosion behaviors in non-equal molar AlCrFeMnNi BCC high-entropy alloys [J]. Materials, 2022, 15: 751
49 Chang X X. Composition, microstructure and mechanical properties of FCC-structure high entropy alloys [D]. Dalian: Dalian University of Technology, 2018
49 常晓雪. FCC结构高熵合金的成分、组织及力学性能研究 [D]. 大连: 大连理工大学, 2018
50 Tsai C W, Chen Y L, Tsai M H, et al. Deformation and annealing behaviors of high-entropy alloy Al0.5CoCrCuFeNi [J]. J. Alloy. Compd., 2009, 486: 427
51 Luo H, Li Z M, Mingers A M, et al. Corrosion behavior of an equiatomic CoCrFeMnNi high-entropy alloy compared with 304 stainless steel in sulfuric acid solution [J]. Corros. Sci., 2018, 134: 131
52 Wang L T, Mercier D, Zanna S, et al. Study of the surface oxides and corrosion behaviour of an equiatomic CoCrFeMnNi high entropy alloy by XPS and ToF-SIMS [J]. Corros. Sci., 2020, 167: 108507
53 Zhao R F, Ren B, Cai B, et al. Corrosion behavior of CoxCrCu-FeMnNi high-entropy alloys prepared by hot pressing sintered in 3.5% NaCl solution [J]. Results. Phys., 2019, 15: 102667
54 Wei L, Wang Z J, Wu Q F, et al. Effect of Mo element and heat treatment on corrosion resistance of Ni2CrFeMo x high-entropy alloyin NaCl solution [J]. Acta Metall. Sin., 2019, 55: 840
54 魏 琳, 王志军, 吴庆峰 等. Mo元素及热处理对Ni2CrFeMox高熵合金在NaCl溶液中耐蚀性能的影响 [J]. 金属学报, 2019, 55: 840
55 Chou Y L, Yeh J W, Shih H C. The effect of molybdenum on the corrosion behaviour of the high-entropy alloys Co1.5CrFeNi1.5-Ti0.5Mo x in aqueous environments [J]. Corros. Sci., 2010, 52: 2571
56 Wang W R, Wang J Q, Yi H G, et al. Effect of molybdenum additives on corrosion behavior of (CoCrFeNi)100 - x Mo x high-entropy alloys [J]. Entropy, 2018, 20: 908
57 Dai C D, Zhao T L, Du C W, et al. Effect of molybdenum content on the microstructure and corrosion behavior of FeCoCrNiMo x high-entropy alloys [J]. J. Mater. Sci. Technol., 2020, 46: 64
58 Zheng Z Y, Li X C, Zhang C, et al. Microstructure and corrosion behaviour of FeCoNiCuSnx high entropy alloys [J]. Mater. Sci. Technol., 2015, 31: 1148
59 Chen Y Y, Hong U T, Shih H C, et al. Electrochemical kinetics of the high entropy alloys in aqueous environments—a comparison with type 304 stainless steel [J]. Corros. Sci., 2005, 47: 2679
60 Li W S, Xing J, Zhang J, et al. Microstructure and anti-corrosion behavior in 3.5% NaCl of warm compacted and sintered 316L [J]. Rare Metal Mater. Eng., 2022, 51: 4714
60 李文生, 邢 健, 张 杰 等. 温压烧结316L不锈钢组织和耐3.5%NaCl腐蚀行为 [J]. 稀有金属材料与工程, 2022, 51: 4714
61 Farhadi K, Zebhi H, Moghadam P N, et al. Electrochemical preparation of nano-colloidal polyaniline in polyacid matrix and its application to the corrosion protection of 430SS [J]. Synthetic Met., 2014, 195: 29
62 Potgieter J H, Olubambi P A, Cornish L, et al. Influence of nickel additions on the corrosion behaviour of low nitrogen 22% Cr series duplex stainless steels [J]. Corros. Sci., 2008, 50: 2572
63 Zhao Y, Cao J Y, Fang Z G, et al. Application prospects of corrosion-resistant high-entropy alloys in island and reef equipment [J]. Equip. Environ. Eng., 2021, 18(11): 42
63 赵 伊, 曹京宜, 方志刚 等. 耐蚀高熵合金在岛礁装备中的应用前景 [J]. 装备环境工程, 2021, 18(11): 42
64 Raza A, Abdulahad S, Kang B, et al. Corrosion resistance of weight reduced AlxCrFeMoV high entropy alloys [J]. Appl. Surf. Sci., 2019, 485: 368
doi: 10.1016/j.apsusc.2019.03.173
65 Shi Y Z, Collins L, Balke N, et al. In-situ electrochemical-AFM study of localized corrosion of Al x CoCrFeNi high-entropy alloys in chloride solution [J]. Appl. Surf. Sci., 2018, 439: 533
66 Shi Y Z, Collins L, Feng R, et al. Homogenization of Al x CoCrFeNi high-entropy alloys with improved corrosion resistance [J]. Corros. Sci., 2018, 133: 120
67 Wang S. Study on the mechanical properties and corrosion resistance of Al x CoFeNiCr1 - x high-entropy alloys [D]. Taiyuan: North University of China, 2020
67 王 帅. Al x CoFeNiCr1 - x 高熵合金微观组织, 力学性能及耐腐蚀性能研究 [D]. 太原: 中北大学, 2020
68 Shi Y Z, Yang B, Xie X, et al. Corrosion of Al x CoCrFeNi high-entropy alloys: Al-content and potential scan-rate dependent pitting behavior [J]. Corros. Sci., 2017, 119: 33
69 Lee C P, Chang C C, Chen Y Y, et al. Effect of the aluminium content of Al x CrFe1.5MnNi0.5 high-entropy alloys on the corrosion behaviour in aqueous environments [J]. Corros. Sci., 2008, 50: 2053
70 Hu R, Du J H, Zhang Y J, et al. Microstructure and corrosion properties of Al x CuFeNiCoCr (x = 0.5, 1.0, 1.5, 2.0) high entropy alloys with Al content [J]. J. Alloy. Compd., 2022, 921: 165455
71 Wu H, Chen G, Tang X T, et al. Effect of Cu content on the microstructure and properties of CoCrFeNiMnAlCu x High-entropy alloy [J]. Nonferrous Met. Eng., 2022, 12(7): 1
71 吴 昊, 陈 刚, 唐啸天 等. Cu含量对CoCrFeNiMnAlCu x 高熵合金微观组织及性能的影响 [J]. 有色金属工程, 2022, 12(7): 1
72 Ren B, Liu Z X, Li D M, et al. Corrosion behavior of CuCrFeNiMn high entropy alloy system in 1 M sulfuric acid solution [J]. Mater. Corros., 2012, 63: 828
73 Chai W K, Lu T, Pan Y. Corrosion behaviors of FeCoNiCr x (x = 0, 0.5, 1.0) multi-principal element alloys: Role of Cr-induced segregation [J]. Intermetallics, 2020, 116: 106654
74 Lin C, Meng L, Tan M T, et al. Microstructures and properties of Cr x-FeNiCu0.5Ti0.5 high-entropy alloys for corrosion resistance [J]. Intermetallics, 2023, 153: 107781
75 Chen X, Hu J X, Liu Y, et al. Corrosion behavior in nitric acid solution and tensile properties of (CuFeNiMn)1 - x Cr x HEAs [J]. Met. Mater. Int., 2021, 27: 2230
76 Kalsar R, Ray R K, Suwas S. Effects of alloying addition on deformation mechanisms, microstructure, texture and mechanical properties in Fe-12Mn-0.5C austenitic steel [J]. Mater. Sci. Eng., 2018, 729A: 385
77 Crook P. Corrosion-resistant nickel alloys, Part 3: nickel alloys provide levels of corrosion resistance not possible with other alloys. This is part three of a four-part series about corrosion-resistant nickel alloys [J]. Adv. Mater. Process., 2007, 165: 45
78 Qiu X W, Liu C G. Microstructure and properties of Al2CrFeCoCuTiNi x high-entropy alloys prepared by laser cladding [J]. J. Alloy. Compd., 2013, 553: 216
79 Kao Y F, Lee T D, Chen S K, et al. Electrochemical passive properties of Al x CoCrFeNi (x = 0, 0.25, 0.50, 1.00) alloys in sulfuric acids [J]. Corros. Sci., 2010, 52: 1026
80 Deng J Q, Cao Z H. Research progress of High-entropy alloy [J]. J. Anyang Inst. Technol., 2018, 17(6): 11
80 邓景泉, 操振华. 高熵合金的研究进展 [J]. 安阳工学院学报, 2018, 17(6): 11
81 Zhang Z T, Axinte E, Ge W J, et al. Microstructure, mechanical properties and corrosion resistance of CuZrY/Al, Ti, Hf series high-entropy alloys [J]. Mater. Design, 2016, 108: 106
82 Zhao Y J, Qiao J W, Ma S G, et al. A hexagonal close-packed high-entropy alloy: The effect of entropy [J]. Mater. Des., 2016, 96: 10
83 Rogal Ł, Czerwinski F, Jochym P T, et al. Microstructure and mechanical properties of the novel Hf25Sc25Ti25Zr25 equiatomic alloy with hexagonal solid solutions [J]. Mater. Design, 2016, 92: 8
84 Tsau C H, Yeh C Y, Tsai M C. The effect of Nb-content on the microstructures and corrosion properties of CrFeCoNiNbx high-entropy alloys [J]. Materials, 2019, 12: 3716
85 Wen X, Cui X F, Jin G, et al. In-situ synthesis of nano-lamellar Ni1.5CrCoFe0.5Mo0.1Nb x eutectic high-entropy alloy coatings by laser cladding: Alloy design and microstructure evolution [J]. Surf. Coat. Technol., 2021, 405: 126728
86 Fu J W, Wang J C, Li F, et al. Effect of Nb addition on the microstructure and corrosion resistance of ferritic stainless steel [J]. Appl. Phys., 2020, 126A: 126
87 Habazaki H, Ukai H, Izumiya K, et al. Corrosion behaviour of amorphous Ni-Cr-Nb-P-B bulk alloys in 6 M HCl solution [J]. Mater. Sci. Eng., 2001, 318A: 77
88 Liu X C, Wang H F, Liu Y, et al. The effect of Nb content on microstructure and properties of laser cladding 316L SS coating [J]. Surf. Coat. Technol., 2021, 425: 127684
89 Wang Z B, Hu H X, Zheng Y G, et al. Comparison of the corrosion behavior of pure titanium and its alloys in fluoride-containing sulfuric acid [J]. Corros. Sci., 2016, 103: 50
90 Jia Q. CrFeCoNiTi x high entropy alloy mechanical properties and corrosion resistance research [D]. Harbin: Harbin University of Science and Technology, 2015
90 贾 强. CrFeCoNiTi x 高熵合金力学性能及耐腐蚀性能研究 [D]. 哈尔滨: 哈尔滨理工大学, 2015
91 Zhou Z M, Li H Y, Liu Y, et al. Effect of Ti on the corrosion behavior of (FeCrCoNi)100 - x Ti x alloy [J]. Corros. Sci., 2022, 209: 110807
92 Izadi M, Soltanieh M, Alamolhoda S, et al. Microstructural characterization and corrosion behavior of Al x CoCrFeNi high entropy alloys [J]. Mater. Chem. Phys., 2021, 273: 124937
93 Qiu Y, Thomas S, Fabijanic D, et al. Microstructural evolution, electrochemical and corrosion properties of Al x CoCrFeNiTi y high entropy alloys [J]. Mater. Des., 2019, 170: 107698
94 Yang H O, Shang X L, Wang L L, et al. Effect of constituent elements on the corrosion resistance of single-phase CoCrFeNi high-entropy alloys in NaCl solution [J]. Acta Metall. Sin., 2018, 54: 905
doi: 10.11900/0412.1961.2017.00399
94 杨海欧, 尚旭亮, 王理林 等. 单相CoCrFeNi高熵合金的组成元素对其在NaCl溶液中的耐蚀性能的影响 [J]. 金属学报, 2018, 54: 905
doi: 10.11900/0412.1961.2017.00399
95 Parakh A, Vaidya M, Kumar N, et al. Effect of crystal structure and grain size on corrosion properties of AlCoCrFeNi high entropy alloy [J]. J. Alloy. Compd., 2021, 863: 158056
96 Vaidya M, Prasad A, Parakh A, et al. Influence of sequence of elemental addition on phase evolution in nanocrystalline AlCoCrFeNi: Novel approach to alloy synthesis using mechanical alloying [J]. Mater. Des., 2017, 126: 37
97 Ralston K D, Birbilis N. Effect of grain size on corrosion: a review [J]. Corrosion, 2010, 66: 075005
98 Zhang X R, Guo J, Zhang X H, et al. Influence of remelting and annealing treatment on corrosion resistance of AlFeNiCoCuCr high entropy alloy in 3.5% NaCl solution [J]. J. Alloy. Compd., 2019, 775: 565
99 Lin C M, Tsai H L, Bor H Y. Effect of aging treatment on microstructure and properties of high-entropy Cu0.5CoCrFeNi alloy [J]. Intermetallics, 2010, 18: 1244
100 Lin C M, Tsai H L. Evolution of microstructure, hardness, and corrosion properties of high-entropy Al0.5CoCrFeNi alloy [J]. Intermetallics, 2011, 19: 288
101 Lee C P, Chen Y Y, Hsu C Y, et al. Enhancing pitting corrosion resistance of Al x CrFe1.5MnNi0.5 high-entropy alloys by anodic treatment in sulfuric acid [J]. Thin Solid Films, 2008, 517: 1301
102 Chou Y L, Wang Y C, Yeh J W, et al. Pitting corrosion of the high-entropy alloy Co1.5CrFeNi1.5Ti0.5Mo0.1 in chloride-containing sulphate solutions [J]. Corros. Sci., 2010, 52: 3481
103 Zuo Y, Wang H T, Zhao J M, et al. The effects of some anions on metastable pitting of 316L stainless steel [J]. Corros. Sci., 2002, 44: 13
[1] 李开洋, 翟蕴龙, 胡新宇, 吴宏, 刘彬, 邢少华, 侯健, 张繁, 张乃强. 共晶高熵合金高温腐蚀的研究进展[J]. 中国腐蚀与防护学报, 2024, 44(6): 1377-1388.
[2] 易铄, 周生璇, 叶鹏, 杜晓洁, 徐震霖, 何宜柱. 选区激光熔化成形含Cu中熵合金的微观组织及耐腐蚀性能[J]. 中国腐蚀与防护学报, 2024, 44(6): 1589-1600.
[3] 马晋遥, 董楠, 郭振森, 韩培德. B、Ce微合金化对S31254超级奥氏体不锈钢析出相及耐蚀性能的影响[J]. 中国腐蚀与防护学报, 2024, 44(6): 1610-1616.
[4] 曹甫洋, 王浩权, 季谦, 丁恒楠, 袁志钟, 罗锐. 大气等离子喷涂FeCoCrNiMn高熵合金涂层的耐海水腐蚀与磨损性能[J]. 中国腐蚀与防护学报, 2024, 44(6): 1529-1537.
[5] 潘宗宇, 刘静, 姜志忠, 罗林, 贾寒冰, 刘欣雨. Fe34Cr30Mo15Ni15Nb3Al3 高熵合金在500℃下氧含量为10-6%的液态铅铋合金中腐蚀行为研究[J]. 中国腐蚀与防护学报, 2024, 44(5): 1353-1360.
[6] 刘久云, 董立谨, 张言, 王勤英, 刘丽. 油气田异种金属焊接接头硫化物应力腐蚀开裂研究进展[J]. 中国腐蚀与防护学报, 2024, 44(4): 863-873.
[7] 蒋光锐, 刘广会, 商婷. 热处理对ZnAlMg镀层组织与耐腐蚀性能的影响[J]. 中国腐蚀与防护学报, 2024, 44(1): 246-254.
[8] 廖敏行, 刘俊, 董宝军, 冷雪松, 蔡泽伦, 武俊伟, 贺建超. 盐雾环境对1Cr18Ni9Ti钎焊接头的影响研究[J]. 中国腐蚀与防护学报, 2023, 43(6): 1312-1318.
[9] 钟嘉欣, 关蕾, 李雨, 黄家勇, 石磊. 2xxx系铝合金第二相对搅拌摩擦焊接头腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2023, 43(6): 1247-1254.
[10] 王凯, 李晨沛, 卢金玲, 王振江, 王维. NiCoCrFeNb0.45 共晶高熵合金在水力机械中的抗空蚀性能研究[J]. 中国腐蚀与防护学报, 2023, 43(5): 1079-1086.
[11] 肖檬, 王勤英, 张兴寿, 西宇辰, 白树林, 董立谨, 张进, 杨俊杰. 激光淬火对AISI 4130钢微观组织结构及腐蚀、磨损行为的影响机制[J]. 中国腐蚀与防护学报, 2023, 43(4): 713-724.
[12] 毛训聪, 陈乐平, 彭聪. Ca-P涂层和Sr-P涂层对脉冲磁场下凝固的Mg-Zn-Zr-Gd合金耐蚀性的影响[J]. 中国腐蚀与防护学报, 2023, 43(3): 647-655.
[13] 汪涵敏, 黄峰, 袁玮, 张佳伟, 王昕煜, 刘静. 新型Cu-Mo耐候钢在模拟海洋大气环境中的腐蚀行为[J]. 中国腐蚀与防护学报, 2023, 43(3): 507-515.
[14] 张全福, 宋蕾, 王建, 郭振宇, 任乃栋, 赵建琪, 武维康, 程伟丽. 挤压态低合金化Mg-0.5Bi-0.5Sn-0.5Ca合金的力学性能及腐蚀行为研究[J]. 中国腐蚀与防护学报, 2023, 43(2): 428-434.
[15] 张小丽, 寻懋年, 梁小红, 张彩丽, 韩培德. 含Ce S31254超级奥氏体不锈钢析出相析出行为及耐蚀性[J]. 中国腐蚀与防护学报, 2023, 43(2): 384-390.