|
|
高熵合金耐蚀性研究进展 |
程永贺1,2, 付俊伟2,3( ), 赵茂密2, 沈云军1 |
1 广西民族大学化学化工学院 南宁 530006 2 广西科学院 海洋腐蚀防护研究院 南宁 530007 3 中国科学院海洋研究所 海洋环境腐蚀与生物污损重点实验室 海洋关键材料重点实验室 青岛 266071 |
|
Research Progress on Corrosion Resistance of High-entropy Alloys |
CHENG Yonghe1,2, FU Junwei2,3( ), ZHAO Maomi2, SHEN Yunjun1 |
1 School of Chemistry and Chemical Engineering, Guangxi University for Nationalities, Nanning 530006, China 2 Marine Corrosion Protection Research Institute of Guangxi Academy of Sciences, Nanning 530007, China 3 Key Laboratory of Advanced Marine Materials, Key Laboratory of Marine Environmental Corrosion and Bio-fouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China |
引用本文:
程永贺, 付俊伟, 赵茂密, 沈云军. 高熵合金耐蚀性研究进展[J]. 中国腐蚀与防护学报, 2024, 44(5): 1100-1116.
Yonghe CHENG,
Junwei FU,
Maomi ZHAO,
Yunjun SHEN.
Research Progress on Corrosion Resistance of High-entropy Alloys[J]. Journal of Chinese Society for Corrosion and protection, 2024, 44(5): 1100-1116.
1 |
Li H, Zhang L Y, Zhang B Y, et al. Microstructure characterization and mechanical properties of stainless steel clad plate [J]. Materials, 2019, 12: 509
|
2 |
Peng Z C, Zheng Z B, Wang X Q, et al. The microstructure effect on fatigue and dwell-fatigue in a nickel-based superalloy [J]. Intermetallics, 2022, 151: 107740
|
3 |
Zhao P P, Song Y W, Dong K H, et al. Effect of passive film on the galvanic corrosion of titanium alloy Ti60 coupled to copper alloy H62 [J]. Mater. Corros., 2019, 70: 1745
|
4 |
Yeh J W, Chen S K, Lin S J, et al. Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes [J]. Adv. Eng. Mater., 2004, 6: 299
|
5 |
Miracle D B, Senkov O N. A critical review of high entropy alloys and related concepts [J]. Acta Mater., 2017, 122: 448
|
6 |
Ye Y F, Wang Q, Lu J, et al. High-entropy alloy: challenges and prospects [J]. Mater. Today, 2016, 19: 349
|
7 |
Miracle D, Majumdar B, Wertz K, et al. New strategies and tests to accelerate discovery and development of multi-principal element structural alloys [J]. Scr. Mater., 2017, 127: 195
|
8 |
Senkov O N, Miller J D, Miracle D B, et al. Accelerated exploration of multi-principal element alloys with solid solution phases [J]. Nat. Commun., 2015, 6: 6529
doi: 10.1038/ncomms7529
pmid: 25739749
|
9 |
Ikeda Y, Grabowski B, Körmann F. Ab initio phase stabilities and mechanical properties of multicomponent alloys: A comprehensive review for high entropy alloys and compositionally complex alloys [J]. Mater. Charact., 2019, 147: 464
doi: 10.1016/j.matchar.2018.06.019
|
10 |
Gao M C, Zhang B, Guo S M, et al. High-entropy alloys in hexagonal close-packed structure [J]. Metall. Mater. Trans., 2016, 47A: 3322
|
11 |
Fu Y, Li J, Luo H, et al. Recent advances on environmental corrosion behavior and mechanism of high-entropy alloys [J]. J. Mater. Sci. Technol., 2021, 80: 217
doi: 10.1016/j.jmst.2020.11.044
|
12 |
Varalakshmi S, Rao G A, Kamaraj M, et al. Hot consolidation and mechanical properties of nanocrystalline equiatomic AlFeTiCrZnCu high entropy alloy after mechanical alloying [J]. J. Mater. Sci., 2010, 45: 5158
|
13 |
Qiu Y, Thomas S, Gibson M A, et al. Corrosion of high entropy alloys [J]. npj Mater. Degrad., 2017, 1: 15
|
14 |
Senkov O N, Scott J M, Senkova S V, et al. Microstructure and elevated temperature properties of a refractory TaNbHfZrTi alloy [J]. J. Mater. Sci., 2012, 47: 4062
|
15 |
Nascimento C B, Donatus U, Ríos C T, et al. A review on corrosion of high entropy alloys: exploring the interplay between corrosion properties, alloy composition, passive film stability and materials selection [J]. Mater. Res., 2022, 25: e20210442
|
16 |
Geetha M, Singh A K, Asokamani R, et al. Ti based biomaterials, the ultimate choice for orthopaedic implants-A review [J]. Prog. Mater. Sci., 2009, 54: 397
|
17 |
Long M, Rack H J. Titanium alloys in total joint replacement—a materials science perspective [J]. Biomaterials, 1998, 19: 1621
doi: 10.1016/s0142-9612(97)00146-4
pmid: 9839998
|
18 |
Niinomi M. Recent metallic materials for biomedical applications [J]. Metall. Mater. Trans., 2002, 33A: 477
|
19 |
Yang W, Liu Y, Pang S J, et al. Bio-corrosion behavior and in vitro biocompatibility of equimolar TiZrHfNbTa high-entropy alloy [J]. Intermetallics, 2020, 124: 106845
|
20 |
Senkov O N, Scott J M, Senkova S V, et al. Microstructure and room temperature properties of a high-entropy TaNbHfZrTi alloy [J]. J. Alloy. Compd., 2011, 509: 6043
|
21 |
Dirras G, Lilensten L, Djemia P, et al. Elastic and plastic properties of as-cast equimolar TiHfZrTaNb high-entropy alloy [J]. Mater. Sci. Eng., 2016, 654A: 30
|
22 |
Tüten N, Canadinc D, Motallebzadeh A, et al. Microstructure and tribological properties of TiTaHfNbZr high entropy alloy coatings deposited on Ti-6Al-4V substrates [J]. Intermetallics, 2019, 105: 99
|
23 |
Hua N B, Wang W J, Wang Q T, et al. Mechanical, corrosion, and wear properties of biomedical Ti-Zr-Nb-Ta-Mo high entropy alloys [J]. J. Alloy. Compd., 2021, 861: 157997
|
24 |
Evans A G, He M Y, Suzuki A, et al. A mechanism governing oxidation-assisted low-cycle fatigue of superalloys [J]. Acta Mater., 2009, 57: 2969
|
25 |
Tong J, Dalby S, Byrne J, et al. Creep, fatigue and oxidation in crack growth in advanced nickel base superalloys [J]. Int. J. Fatigue, 2001, 23: 897
|
26 |
Eliaz N, Shemesh G, Latanision R M. Hot corrosion in gas turbine components [J]. Eng. Fail. Anal., 2002, 9: 31
|
27 |
Tsao T K, Yeh A C, Kuo C M, et al. High temperature oxidation and corrosion properties of high entropy superalloys [J]. Entropy, 2016, 18: 62
|
28 |
Gorr B, Müller F, Azim M, et al. High-temperature oxidation behavior of refractory high-entropy alloys: effect of alloy composition [J]. Oxid. Met., 2017, 88: 339
|
29 |
He F, Wang Z J, Wu Q F, et al. Phase separation of metastable CoCrFeNi high entropy alloy at intermediate temperatures [J]. Scr. Mater., 2017, 126: 15
|
30 |
Wu Z, Bei H, Otto F, et al. Recovery, recrystallization, grain growth and phase stability of a family of FCC-structured multi-component equiatomic solid solution alloys [J]. Intermetallics, 2014, 46: 131
|
31 |
Senkov O N, Wilks G B, Scott J M, et al. Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys [J]. Intermetallics, 2011, 19: 698
|
32 |
Wang X Z, Wang Y H, Yu J B, et al. A brief review about perspective and properties of high-entropy alloys [J]. J. Netshape Form. Eng., 2022, 14(11): 73
|
32 |
王先珍, 王一涵, 俞嘉彬 等. 高熵合金性能特点与应用展望 [J]. 精密成形工程, 2022, 14(11): 73
|
33 |
Gromov V E, Shlyarova Y A, Konovalov S V, et al. Application of high-entropy alloys [J]. Steel Transl., 2021, 51: 700
|
34 |
Liang H, Qiao D X, Miao J W, et al. Anomalous microstructure and tribological evaluation of AlCrFeNiW0.2Ti0.5 high-entropy alloy coating manufactured by laser cladding in seawater [J]. J. Mater. Sci. Technol., 2021, 85: 224
doi: 10.1016/j.jmst.2020.12.050
|
35 |
Hsu Y J, Chiang W C, Wu J K. Corrosion behavior of FeCoNiCrCu x high-entropy alloys in 3.5% sodium chloride solution [J]. Mater. Chem. Phys., 2005, 92: 112
|
36 |
Zhang Y, Zhou Y J, Lin J P, et al. Solid-solution phase formation rules for multi-component alloys [J]. Adv. Eng. Mater., 2008, 10: 534
|
37 |
Guo S, Ng C, Lu J, et al. Effect of valence electron concentration on stability of FCC or BCC phase in high entropy alloys [J]. J. Appl. Phys., 2011, 109: 103505
|
38 |
Guo S, Liu C T. Phase stability in high entropy alloys: Formation of solid-solution phase or amorphous phase [J]. Prog. Nat. Sci.: Mater. Int., 2011, 21: 433
|
39 |
Muangtong P, Rodchanarowan A, Chaysuwan D, et al. The corrosion behaviour of CoCrFeNi-x (x = Cu, Al, Sn) high entropy alloy systems in chloride solution [J]. Corros. Sci., 2020, 172: 108740
|
40 |
Zhang B, Wang J, Wu B, et al. Unmasking chloride attack on the passive film of metals [J]. Nat. Commun., 2018, 9: 2559
doi: 10.1038/s41467-018-04942-x
pmid: 29967353
|
41 |
Wang F J, Zhang Y, Chen G L, et al. Cooling rate and size effect on the microstructure and mechanical properties of AlCoCrFeNi high entropy alloy [J]. J. Eng. Mater. Technol., 2009, 131: 034501
|
42 |
Zhao Y, Wang M L, Cui H Z, et al. Effects of Ti-to-Al ratios on the phases, microstructures, mechanical properties, and corrosion resistance of Al2-xCoCrFeNiTix high-entropy alloys [J]. J. Alloy. Compd., 2019, 805: 585
|
43 |
Yu Y, Wang J, Li J S, et al. Characterization of BCC phases in AlCoCrFeNiTi x high entropy alloys [J]. Mater. Lett., 2015, 138: 78
|
44 |
Liu L, Li Y, Wang F H. Influence of micro-structure on corrosion behavior of a Ni-based superalloy in 3.5% NaCl [J]. Electrochim. Acta, 2007, 52: 7193
|
45 |
Liu J, Liu H, Chen P J, et al. Microstructural characterization and corrosion behaviour of AlCoCrFeNiTix high-entropy alloy coatings fabricated by laser cladding [J]. Surf. Coat. Technol., 2019, 361: 63
|
46 |
Zhou Y J, Zhang Y, Wang Y L, et al. Solid solution alloys of AlCoCrFeNiTi x with excellent room-temperature mechanical properties [J]. Appl. Phys. Lett., 2007, 90: 181904
|
47 |
Wang X F, Zhang Y, Qiao Y, et al. Novel microstructure and properties of multicomponent CoCrCuFeNiTi x alloys [J]. Intermetallics, 2007, 15: 357
|
48 |
Hsu W C, Kao W P, Yeh J W, et al. Effect of Mo on the mechanical and corrosion behaviors in non-equal molar AlCrFeMnNi BCC high-entropy alloys [J]. Materials, 2022, 15: 751
|
49 |
Chang X X. Composition, microstructure and mechanical properties of FCC-structure high entropy alloys [D]. Dalian: Dalian University of Technology, 2018
|
49 |
常晓雪. FCC结构高熵合金的成分、组织及力学性能研究 [D]. 大连: 大连理工大学, 2018
|
50 |
Tsai C W, Chen Y L, Tsai M H, et al. Deformation and annealing behaviors of high-entropy alloy Al0.5CoCrCuFeNi [J]. J. Alloy. Compd., 2009, 486: 427
|
51 |
Luo H, Li Z M, Mingers A M, et al. Corrosion behavior of an equiatomic CoCrFeMnNi high-entropy alloy compared with 304 stainless steel in sulfuric acid solution [J]. Corros. Sci., 2018, 134: 131
|
52 |
Wang L T, Mercier D, Zanna S, et al. Study of the surface oxides and corrosion behaviour of an equiatomic CoCrFeMnNi high entropy alloy by XPS and ToF-SIMS [J]. Corros. Sci., 2020, 167: 108507
|
53 |
Zhao R F, Ren B, Cai B, et al. Corrosion behavior of CoxCrCu-FeMnNi high-entropy alloys prepared by hot pressing sintered in 3.5% NaCl solution [J]. Results. Phys., 2019, 15: 102667
|
54 |
Wei L, Wang Z J, Wu Q F, et al. Effect of Mo element and heat treatment on corrosion resistance of Ni2CrFeMo x high-entropy alloyin NaCl solution [J]. Acta Metall. Sin., 2019, 55: 840
|
54 |
魏 琳, 王志军, 吴庆峰 等. Mo元素及热处理对Ni2CrFeMox高熵合金在NaCl溶液中耐蚀性能的影响 [J]. 金属学报, 2019, 55: 840
|
55 |
Chou Y L, Yeh J W, Shih H C. The effect of molybdenum on the corrosion behaviour of the high-entropy alloys Co1.5CrFeNi1.5-Ti0.5Mo x in aqueous environments [J]. Corros. Sci., 2010, 52: 2571
|
56 |
Wang W R, Wang J Q, Yi H G, et al. Effect of molybdenum additives on corrosion behavior of (CoCrFeNi)100 - x Mo x high-entropy alloys [J]. Entropy, 2018, 20: 908
|
57 |
Dai C D, Zhao T L, Du C W, et al. Effect of molybdenum content on the microstructure and corrosion behavior of FeCoCrNiMo x high-entropy alloys [J]. J. Mater. Sci. Technol., 2020, 46: 64
|
58 |
Zheng Z Y, Li X C, Zhang C, et al. Microstructure and corrosion behaviour of FeCoNiCuSnx high entropy alloys [J]. Mater. Sci. Technol., 2015, 31: 1148
|
59 |
Chen Y Y, Hong U T, Shih H C, et al. Electrochemical kinetics of the high entropy alloys in aqueous environments—a comparison with type 304 stainless steel [J]. Corros. Sci., 2005, 47: 2679
|
60 |
Li W S, Xing J, Zhang J, et al. Microstructure and anti-corrosion behavior in 3.5% NaCl of warm compacted and sintered 316L [J]. Rare Metal Mater. Eng., 2022, 51: 4714
|
60 |
李文生, 邢 健, 张 杰 等. 温压烧结316L不锈钢组织和耐3.5%NaCl腐蚀行为 [J]. 稀有金属材料与工程, 2022, 51: 4714
|
61 |
Farhadi K, Zebhi H, Moghadam P N, et al. Electrochemical preparation of nano-colloidal polyaniline in polyacid matrix and its application to the corrosion protection of 430SS [J]. Synthetic Met., 2014, 195: 29
|
62 |
Potgieter J H, Olubambi P A, Cornish L, et al. Influence of nickel additions on the corrosion behaviour of low nitrogen 22% Cr series duplex stainless steels [J]. Corros. Sci., 2008, 50: 2572
|
63 |
Zhao Y, Cao J Y, Fang Z G, et al. Application prospects of corrosion-resistant high-entropy alloys in island and reef equipment [J]. Equip. Environ. Eng., 2021, 18(11): 42
|
63 |
赵 伊, 曹京宜, 方志刚 等. 耐蚀高熵合金在岛礁装备中的应用前景 [J]. 装备环境工程, 2021, 18(11): 42
|
64 |
Raza A, Abdulahad S, Kang B, et al. Corrosion resistance of weight reduced AlxCrFeMoV high entropy alloys [J]. Appl. Surf. Sci., 2019, 485: 368
doi: 10.1016/j.apsusc.2019.03.173
|
65 |
Shi Y Z, Collins L, Balke N, et al. In-situ electrochemical-AFM study of localized corrosion of Al x CoCrFeNi high-entropy alloys in chloride solution [J]. Appl. Surf. Sci., 2018, 439: 533
|
66 |
Shi Y Z, Collins L, Feng R, et al. Homogenization of Al x CoCrFeNi high-entropy alloys with improved corrosion resistance [J]. Corros. Sci., 2018, 133: 120
|
67 |
Wang S. Study on the mechanical properties and corrosion resistance of Al x CoFeNiCr1 - x high-entropy alloys [D]. Taiyuan: North University of China, 2020
|
67 |
王 帅. Al x CoFeNiCr1 - x 高熵合金微观组织, 力学性能及耐腐蚀性能研究 [D]. 太原: 中北大学, 2020
|
68 |
Shi Y Z, Yang B, Xie X, et al. Corrosion of Al x CoCrFeNi high-entropy alloys: Al-content and potential scan-rate dependent pitting behavior [J]. Corros. Sci., 2017, 119: 33
|
69 |
Lee C P, Chang C C, Chen Y Y, et al. Effect of the aluminium content of Al x CrFe1.5MnNi0.5 high-entropy alloys on the corrosion behaviour in aqueous environments [J]. Corros. Sci., 2008, 50: 2053
|
70 |
Hu R, Du J H, Zhang Y J, et al. Microstructure and corrosion properties of Al x CuFeNiCoCr (x = 0.5, 1.0, 1.5, 2.0) high entropy alloys with Al content [J]. J. Alloy. Compd., 2022, 921: 165455
|
71 |
Wu H, Chen G, Tang X T, et al. Effect of Cu content on the microstructure and properties of CoCrFeNiMnAlCu x High-entropy alloy [J]. Nonferrous Met. Eng., 2022, 12(7): 1
|
71 |
吴 昊, 陈 刚, 唐啸天 等. Cu含量对CoCrFeNiMnAlCu x 高熵合金微观组织及性能的影响 [J]. 有色金属工程, 2022, 12(7): 1
|
72 |
Ren B, Liu Z X, Li D M, et al. Corrosion behavior of CuCrFeNiMn high entropy alloy system in 1 M sulfuric acid solution [J]. Mater. Corros., 2012, 63: 828
|
73 |
Chai W K, Lu T, Pan Y. Corrosion behaviors of FeCoNiCr x (x = 0, 0.5, 1.0) multi-principal element alloys: Role of Cr-induced segregation [J]. Intermetallics, 2020, 116: 106654
|
74 |
Lin C, Meng L, Tan M T, et al. Microstructures and properties of Cr x-FeNiCu0.5Ti0.5 high-entropy alloys for corrosion resistance [J]. Intermetallics, 2023, 153: 107781
|
75 |
Chen X, Hu J X, Liu Y, et al. Corrosion behavior in nitric acid solution and tensile properties of (CuFeNiMn)1 - x Cr x HEAs [J]. Met. Mater. Int., 2021, 27: 2230
|
76 |
Kalsar R, Ray R K, Suwas S. Effects of alloying addition on deformation mechanisms, microstructure, texture and mechanical properties in Fe-12Mn-0.5C austenitic steel [J]. Mater. Sci. Eng., 2018, 729A: 385
|
77 |
Crook P. Corrosion-resistant nickel alloys, Part 3: nickel alloys provide levels of corrosion resistance not possible with other alloys. This is part three of a four-part series about corrosion-resistant nickel alloys [J]. Adv. Mater. Process., 2007, 165: 45
|
78 |
Qiu X W, Liu C G. Microstructure and properties of Al2CrFeCoCuTiNi x high-entropy alloys prepared by laser cladding [J]. J. Alloy. Compd., 2013, 553: 216
|
79 |
Kao Y F, Lee T D, Chen S K, et al. Electrochemical passive properties of Al x CoCrFeNi (x = 0, 0.25, 0.50, 1.00) alloys in sulfuric acids [J]. Corros. Sci., 2010, 52: 1026
|
80 |
Deng J Q, Cao Z H. Research progress of High-entropy alloy [J]. J. Anyang Inst. Technol., 2018, 17(6): 11
|
80 |
邓景泉, 操振华. 高熵合金的研究进展 [J]. 安阳工学院学报, 2018, 17(6): 11
|
81 |
Zhang Z T, Axinte E, Ge W J, et al. Microstructure, mechanical properties and corrosion resistance of CuZrY/Al, Ti, Hf series high-entropy alloys [J]. Mater. Design, 2016, 108: 106
|
82 |
Zhao Y J, Qiao J W, Ma S G, et al. A hexagonal close-packed high-entropy alloy: The effect of entropy [J]. Mater. Des., 2016, 96: 10
|
83 |
Rogal Ł, Czerwinski F, Jochym P T, et al. Microstructure and mechanical properties of the novel Hf25Sc25Ti25Zr25 equiatomic alloy with hexagonal solid solutions [J]. Mater. Design, 2016, 92: 8
|
84 |
Tsau C H, Yeh C Y, Tsai M C. The effect of Nb-content on the microstructures and corrosion properties of CrFeCoNiNbx high-entropy alloys [J]. Materials, 2019, 12: 3716
|
85 |
Wen X, Cui X F, Jin G, et al. In-situ synthesis of nano-lamellar Ni1.5CrCoFe0.5Mo0.1Nb x eutectic high-entropy alloy coatings by laser cladding: Alloy design and microstructure evolution [J]. Surf. Coat. Technol., 2021, 405: 126728
|
86 |
Fu J W, Wang J C, Li F, et al. Effect of Nb addition on the microstructure and corrosion resistance of ferritic stainless steel [J]. Appl. Phys., 2020, 126A: 126
|
87 |
Habazaki H, Ukai H, Izumiya K, et al. Corrosion behaviour of amorphous Ni-Cr-Nb-P-B bulk alloys in 6 M HCl solution [J]. Mater. Sci. Eng., 2001, 318A: 77
|
88 |
Liu X C, Wang H F, Liu Y, et al. The effect of Nb content on microstructure and properties of laser cladding 316L SS coating [J]. Surf. Coat. Technol., 2021, 425: 127684
|
89 |
Wang Z B, Hu H X, Zheng Y G, et al. Comparison of the corrosion behavior of pure titanium and its alloys in fluoride-containing sulfuric acid [J]. Corros. Sci., 2016, 103: 50
|
90 |
Jia Q. CrFeCoNiTi x high entropy alloy mechanical properties and corrosion resistance research [D]. Harbin: Harbin University of Science and Technology, 2015
|
90 |
贾 强. CrFeCoNiTi x 高熵合金力学性能及耐腐蚀性能研究 [D]. 哈尔滨: 哈尔滨理工大学, 2015
|
91 |
Zhou Z M, Li H Y, Liu Y, et al. Effect of Ti on the corrosion behavior of (FeCrCoNi)100 - x Ti x alloy [J]. Corros. Sci., 2022, 209: 110807
|
92 |
Izadi M, Soltanieh M, Alamolhoda S, et al. Microstructural characterization and corrosion behavior of Al x CoCrFeNi high entropy alloys [J]. Mater. Chem. Phys., 2021, 273: 124937
|
93 |
Qiu Y, Thomas S, Fabijanic D, et al. Microstructural evolution, electrochemical and corrosion properties of Al x CoCrFeNiTi y high entropy alloys [J]. Mater. Des., 2019, 170: 107698
|
94 |
Yang H O, Shang X L, Wang L L, et al. Effect of constituent elements on the corrosion resistance of single-phase CoCrFeNi high-entropy alloys in NaCl solution [J]. Acta Metall. Sin., 2018, 54: 905
doi: 10.11900/0412.1961.2017.00399
|
94 |
杨海欧, 尚旭亮, 王理林 等. 单相CoCrFeNi高熵合金的组成元素对其在NaCl溶液中的耐蚀性能的影响 [J]. 金属学报, 2018, 54: 905
doi: 10.11900/0412.1961.2017.00399
|
95 |
Parakh A, Vaidya M, Kumar N, et al. Effect of crystal structure and grain size on corrosion properties of AlCoCrFeNi high entropy alloy [J]. J. Alloy. Compd., 2021, 863: 158056
|
96 |
Vaidya M, Prasad A, Parakh A, et al. Influence of sequence of elemental addition on phase evolution in nanocrystalline AlCoCrFeNi: Novel approach to alloy synthesis using mechanical alloying [J]. Mater. Des., 2017, 126: 37
|
97 |
Ralston K D, Birbilis N. Effect of grain size on corrosion: a review [J]. Corrosion, 2010, 66: 075005
|
98 |
Zhang X R, Guo J, Zhang X H, et al. Influence of remelting and annealing treatment on corrosion resistance of AlFeNiCoCuCr high entropy alloy in 3.5% NaCl solution [J]. J. Alloy. Compd., 2019, 775: 565
|
99 |
Lin C M, Tsai H L, Bor H Y. Effect of aging treatment on microstructure and properties of high-entropy Cu0.5CoCrFeNi alloy [J]. Intermetallics, 2010, 18: 1244
|
100 |
Lin C M, Tsai H L. Evolution of microstructure, hardness, and corrosion properties of high-entropy Al0.5CoCrFeNi alloy [J]. Intermetallics, 2011, 19: 288
|
101 |
Lee C P, Chen Y Y, Hsu C Y, et al. Enhancing pitting corrosion resistance of Al x CrFe1.5MnNi0.5 high-entropy alloys by anodic treatment in sulfuric acid [J]. Thin Solid Films, 2008, 517: 1301
|
102 |
Chou Y L, Wang Y C, Yeh J W, et al. Pitting corrosion of the high-entropy alloy Co1.5CrFeNi1.5Ti0.5Mo0.1 in chloride-containing sulphate solutions [J]. Corros. Sci., 2010, 52: 3481
|
103 |
Zuo Y, Wang H T, Zhao J M, et al. The effects of some anions on metastable pitting of 316L stainless steel [J]. Corros. Sci., 2002, 44: 13
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|