Please wait a minute...
中国腐蚀与防护学报  2025, Vol. 45 Issue (4): 947-955     CSTR: 32134.14.1005.4537.2024.319      DOI: 10.11902/1005.4537.2024.319
  研究报告 本期目录 | 过刊浏览 |
沉淀相对镍基718合金高温高压水环境应力腐蚀裂纹萌生行为影响研究
李维鹏1,2, 罗坤杰1, 王惠生3, 陈嘉诚3, 韩姚磊1, 庞晓露2, 彭群家1(), 乔利杰2()
1 苏州热工研究院有限公司 苏州 215004
2 北京科技大学北京材料基因工程高精尖创新中心 北京 100083
3 中广核铀业发展有限公司 阳江 529500
Effect of Precipitation on Stress Corrosion Cracking Initiation of Nickel Based 718 Alloy in High Temperature and High Pressure Water
LI Weipeng1,2, LUO Kunjie1, WANG Huisheng3, CHEN Jiacheng3, HAN Yaolei1, PANG Xiaolu2, PENG Qunjia1(), QIAO Lijie2()
1 Suzhou Nuclear Power Research Institute, Suzhou 215004, China
2 Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing 100083, China
3 CGNPC Uranium Resources Co., Ltd., Yangjiang 529500, China
引用本文:

李维鹏, 罗坤杰, 王惠生, 陈嘉诚, 韩姚磊, 庞晓露, 彭群家, 乔利杰. 沉淀相对镍基718合金高温高压水环境应力腐蚀裂纹萌生行为影响研究[J]. 中国腐蚀与防护学报, 2025, 45(4): 947-955.
Weipeng LI, Kunjie LUO, Huisheng WANG, Jiacheng CHEN, Yaolei HAN, Xiaolu PANG, Qunjia PENG, Lijie QIAO. Effect of Precipitation on Stress Corrosion Cracking Initiation of Nickel Based 718 Alloy in High Temperature and High Pressure Water[J]. Journal of Chinese Society for Corrosion and protection, 2025, 45(4): 947-955.

全文: PDF(28917 KB)   HTML
摘要: 

镍基718合金因力学性能优异、易加工且耐腐蚀性能好,被广泛用于制备反应堆燃料组件格架弹簧。在辐照、应力和一回路高温高压水等苛刻环境共同作用下,镍基718合金格架弹簧存在发生应力腐蚀开裂(SCC)的风险。近年来国内外已经陆续出现因镍基718合金格架弹簧SCC导致的燃料棒破损现象,对核电厂的安全性、可靠性和经济性产生重要影响。本文以核电用标准热处理工艺的镍基718合金带材为研究对象,在模拟核电一回路水环境中开展镍基718合金SCC萌生行为研究,通过在不同应变下间断式取样观察表面裂纹萌生行为。研究发现,标准热处理工艺镍基718合金以晶界开裂为主,(Nb, Ti)C析出相会氧化成脆性的含Nb氧化物,氧化物后的(Nb, Ti)C与TiN在应力的作用下也发生开裂。随着应变的增加,晶界和(Nb, Ti)C处裂纹进一步向晶界扩展,TiN处的裂纹有向晶界扩展的趋势。因此,(Nb, Ti)C与TiN会降低镍基718合金的抗SCC性能。

关键词 核电镍基718合金应力腐蚀裂纹萌生组织结构    
Abstract

Nickel based 718 alloy is commonly used to fabricate grid springs for pressure water reactor, due to its excellent mechanical properties, relative ease of manufacturing, and good corrosion resistance. There is a risk of stress corrosion cracking (SCC) for nickel based 718 alloy in harsh environments such as irradiation, stress, and high temperature and pressure water in the primary circuit. In recent years, fuel rod damage caused by SCC of nickel based 718 alloy grid springs has emerged both domestically and internationally, which has a significant impact on the safety, reliability, and economy of nuclear power plants. Herein, the SCC initiation behavior of nickel based 718 alloy strips, being subjected to standard heat treatment, in a simulated pressurized water environment of primary circuit of nuclear power plant was assessed, while the evolution of crack initiation on the alloy surface was observed through intermittent sampling under different strain conditions. It is found that the cracking of 718 alloy emerged mainly on grain boundaries, meanwhile, the precipitates of (Nb, Ti)C tend to be oxidized into brittle Nb containing oxides. The oxidized (Nb, Ti)C and TiN are easy crack under the action of stress. With the increase of strain, cracks at grain boundaries and on particles (Nb, Ti)C tend to further propagating, and the cracks at TiN tend to expanding towards grain boundaries. Therefore, (Nb, Ti)C and TiN may play a detrimental role to the SCC resistance of nickel based 718 alloy.

Key wordsnuclear power    nickel based 718 alloy    stress corrosion    crack initiation    microstructure
收稿日期: 2024-09-30      32134.14.1005.4537.2024.319
ZTFLH:  TL341  
基金资助:中广核-北科大先进能源材料与服役安全联合研发中心资助项目
通讯作者: 彭群家,E-mail:qunjiapeng@163.com,研究方向为核电厂老化与寿命管理;
乔利杰,E-mail:lqiao@ustb.edu.cn,研究方向为材料腐蚀、氢脆和应力腐蚀
Corresponding author: PENG Qunjia, E-mail: qunjiapeng@163.com;
QIAO Lijie, E-mail: lqiao@ustb.edu.cn
作者简介: 李维鹏,男,1991年生,博士生
StripCSiMnPSCrNiMoAlTiNb + TaCoFe
A0.0090.050.260.0030.00118.2853.43.070.511.035.110.0018Bal.
B0.010.040.260.0060.00118.0853.63.060.521.025.040.002Bal.
表1  两种镍基718合金化学成分 (mass fraction / %)
图1  样品尺寸(mm)
图2  两种镍基718合金带材组织结构形貌
图3  镍基718合金带材A组织结构SEM像
PositionNiCrFeNbCTiN
Location 11.820.780.8669.7617.589.20-
Location 23.371.831.414.125.3662.8521.05
Location 349.3517.9417.464.826.431.01-
表2  图3中3个位置处EDS分析结果 (mass fraction / %)
AlloyRp0.2 / MPaRm/ MPaA / %
Strip A1089128018.5
Strip B1112129919
表3  两种镍基718合金带材力学性能
图4  高温高压水环境镍基718合金A种带材SSRT实验原位SEM观察及EDS分析结果
图5  高温高压水环境镍基718合金B种带材SSRT实验原位SEM观察及EDS分析结果
MaterialsStrainCrack density #cracks/mm2Crack length per unit area / μm·mm-2
Strip A10%744
15%48356
Strip B10%33253
15%1451314
表4  两种带材裂纹信息统计
图6  高温高压水环境中两种镍基718合金带材SSRT实验典型断口形貌
图7  320 ℃下氮气环境中10%应变后镍基718合金B种带材表面TiN析出相SEM观察及能谱分析
图8  320 ℃下氮气环境中10%应变后镍基718合金B种带材表面(Nb,Ti)C析出相SEM观察及EDS分析
MaterialsCharacteristics of original organizational structureCrack density at different positions
Density of precipitated phases #cracks/mm2StrainCrack density at grain boundaries / #cracks·mm-2Crack density at precipitated phases / #cracks·mm-2
Strip A13010%34
15%408
Strip B36310%2112
15%12045
表5  两种带材裂纹特征信息统计
图9  带材A在拉断以及带材B在应变10%时(Nb, Ti)C析出相SEM像
图10  带材B表面(Nb, Ti)C析出相SEM观察及EDS分析
[1] Wang M, Song M, Lear C R, et al. Irradiation assisted stress corrosion cracking of commercial and advanced alloys for light water reactor core internals [J]. J. Nucl. Mater., 2019, 515: 52
doi: 10.1016/j.jnucmat.2018.12.015
[2] Carsughi F, Derz H, Ferguson P, et al. Investigations on Inconel 718 irradiated with 800 MeV protons [J]. J. Nucl. Mater., 1999, 264: 78
[3] Thomas L E, Sencer B H, Bruemmer S M. Radiation-induced phase instabilities and their effects on hardening and solute segregation in precipitation-strengthened alloy 718 [J]. MRS Online Proc. Libr., 2000, 650: 15
[4] Morton D S, Attanasio S A, Young G A, et al. The influence of dissolved hydrogen on nickel alloy SCC: a window to fundamental insight [A]. Corrosion 2001 [C]. Houston, 2001: NACE-01117
[5] Andresen P L, Morra M M. Stress corrosion cracking of stainless steels and nickel alloys in high-temperature water [J]. Corrosion, 2008, 64: 15
[6] Wang M, Song M, Was G S, et al. The roles of thermal mechanical treatment and δ phase in the stress corrosion cracking of alloy 718 in primary water [J]. Corros. Sci., 2019, 160: 108168
[7] Ning Z H, Zhang H R, Zhang S H, et al. Effects of precipitation on the stress corrosion crack initiation of alloy 718 in simulated pressurized water reactor primary environment [J]. Acta Mater., 2024, 276: 120127
[8] Garzarolli F, Alter D, Dewes P, et al. Deformability of austenitic stainless steels and Ni-base alloys in the core of a boiling and a pressurized water reactor [A]. Proceedings of the Third International Symposium on Environmental Degradation of Materials in Nuclear Power Systems—Water Reactors [C]. Traverse City, 1987: 657
[9] Dewes P, Alter D, Garzarolli F, et al. Measurement of the deformability of austenitic stainless steels and nickel-base alloys in light water reactor cores [A]. Slow Strain Rate Testing for the Evaluation of Environmentally Induced Cracking: Research and Engineering Applications [C]. West Conshohocken, 1993: 19
[10] Leonard K J, Gussev M N, Stevens J N, et al. Analysis of stress corrosion cracking in alloy 718 following commercial reactor exposure [J]. J. Nucl. Mater., 2015, 466: 443
[11] Demetriou V, Robson J D, Preuss M, et al. Study of the effect of hydrogen charging on the tensile properties and microstructure of four variant heat treatments of nickel alloy 718 [J]. Int. J. Hydrog. Energy, 2017, 42: 23856
[12] Gao M, Dwyer D J, Wei R P. Chemical and microstructural aspects of creep crack growth in inconel 718 alloy [A]. Superalloys 718, 625, 706 and Various Dcrivatives [C]. Warrendale, 1994: 581
[13] King B R, Patel H C, Gulino D A, et al. Kinetic measurements of oxygen dissolution into niobium substrates: in situ X-ray photoelectron spectroscopy studies [J]. Thin Solid Films, 1990, 192: 351
[14] Miller C F, Simmons G W, Wei R P. High temperature oxidation of Nb, NbC and Ni3Nb and oxygen enhanced crack growth [J] Scr. Mater., 2000, 42: 227
[15] Dutta R S, Tewari R, De P K. Effects of heat-treatment on the extent of chromium depletion and caustic corrosion resistance of alloy 690 [J]. Corros. Sci., 2007, 49: 303
[1] 樊嘉骏, 董立谨, 马成, 张兹瑜, 明洪亮, 韦博鑫, 彭庆, 王勤英. 掺氢天然气环境下管线钢氢致疲劳裂纹扩展研究进展[J]. 中国腐蚀与防护学报, 2025, 45(2): 296-306.
[2] 吴宇航, 陈旭, 王首德, 刘畅, 刘杰. 直流电作用下X70钢在近中性土壤中应力腐蚀行为研究[J]. 中国腐蚀与防护学报, 2025, 45(2): 489-496.
[3] 李开洋, 吴悠, 张冠霖, 张乃强. 高温超临界CO2 结构材料环境致裂研究进展[J]. 中国腐蚀与防护学报, 2025, 45(1): 61-68.
[4] 张颛利, 戴海龙, 张喆, 石守稳, 陈旭. HF溶液中316L应力腐蚀开裂行为研究[J]. 中国腐蚀与防护学报, 2024, 44(6): 1633-1640.
[5] 苏志诚, 张弦, 程焱, 刘静, 吴开明. 同成分的超细贝氏体钢和Q&P钢在海水中应力腐蚀开裂行为对比研究[J]. 中国腐蚀与防护学报, 2024, 44(6): 1495-1506.
[6] 刘广胜, 王卫军, 周佩, 谭金颢, 丁宏鑫, 张伟, 向勇. 含杂CO2 封存条件下13CrN80套管钢腐蚀规律研究[J]. 中国腐蚀与防护学报, 2024, 44(5): 1200-1212.
[7] 赵骞, 张洁, 毛锐锐, 缪春辉, 卞亚飞, 滕越, 汤文明. Q235钢结构件表面热镀锌层的应力腐蚀及其机理[J]. 中国腐蚀与防护学报, 2024, 44(5): 1305-1315.
[8] 高俊宣, 曹晗, 匡文军, 郑全, 张鹏, 钟巍华. 奥氏体钢辐照促进应力腐蚀开裂行为机制的研究进展[J]. 中国腐蚀与防护学报, 2024, 44(4): 835-846.
[9] 刘久云, 董立谨, 张言, 王勤英, 刘丽. 油气田异种金属焊接接头硫化物应力腐蚀开裂研究进展[J]. 中国腐蚀与防护学报, 2024, 44(4): 863-873.
[10] 岑远遥, 廖光萌, 朱玉琴, 赵方超, 刘聪, 何建新, 周堃. 基于布拉格光纤光栅的铝合金应力腐蚀裂纹扩展监测技术[J]. 中国腐蚀与防护学报, 2024, 44(3): 815-822.
[11] 李禅, 王庆田, 杨承刚, 张宪伟, 韩冬傲, 刘雨薇, 刘智勇. 904L超级奥氏体不锈钢在模拟核电一回路环境中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2024, 44(3): 716-724.
[12] 彭立园, 吴欣强, 张兹瑜, 谭季波. 压水堆核电厂热态功能试验水化学与设备材料腐蚀关系的研究进展[J]. 中国腐蚀与防护学报, 2024, 44(3): 529-539.
[13] 原玉, 向勇, 李晨, 赵雪会, 闫伟, 姚二冬. CCUS系统中CO2 注入井管材腐蚀研究进展[J]. 中国腐蚀与防护学报, 2024, 44(1): 15-26.
[14] 郭昭, 李晗, 崔中雨, 王昕, 崔洪芝. A100钢在动态薄液膜和人工海水环境中的应力腐蚀行为对比研究[J]. 中国腐蚀与防护学报, 2023, 43(6): 1303-1311.
[15] 李双, 董立谨, 郑淮北, 吴铖川, 王洪利, 凌东, 王勤英. 飞机起落架用超高强钢应力腐蚀开裂研究进展[J]. 中国腐蚀与防护学报, 2023, 43(6): 1178-1188.