Please wait a minute...
中国腐蚀与防护学报  2023, Vol. 43 Issue (3): 647-655     CSTR: 32134.14.1005.4537.2022.197      DOI: 10.11902/1005.4537.2022.197
  研究报告 本期目录 | 过刊浏览 |
Ca-P涂层和Sr-P涂层对脉冲磁场下凝固的Mg-Zn-Zr-Gd合金耐蚀性的影响
毛训聪, 陈乐平(), 彭聪
南昌航空大学航空制造工程学院 南昌 330063
Effect of Chemical Conversion Coatings Ca-P and Sr-P on Corrosion Resistance of Mg-Zn-Zr-Gd Alloy Cast After Solidifying by Pulsed Magnetic Field
MAO Xuncong, CHEN Leping(), PENG Cong
School of Aeronautical Manufacturing Engineering, Nanchang Hangkong University, Nannchang 330063, China
全文: PDF(15707 KB)   HTML
摘要: 

利用电化学测试、浸泡实验和扫描电镜等方法,研究Ca-P涂层和Sr-P涂层对脉冲磁场下凝固的Mg-Zn-Zr-Gd合金耐蚀性能的影响。研究表明,脉冲磁场下凝固的基体试样的耐蚀性能比无脉冲磁场下凝固的基体试样更好;且基体试样的耐蚀性能对其表面涂层的耐蚀性能会产生一定的影响,基体试样的耐蚀性能越好,其表面制备的涂层耐蚀性能也越好。另外,不同成分的化学涂层其耐蚀性能也不同,Ca-P涂层由大量棒状组织组成,棒状颗粒分布不均匀且较为疏松,且厚度不均匀;Ca-P涂层腐蚀形貌均有较多的孔洞,且腐蚀产物疏松。Sr-P涂层由许多细小的结晶状颗粒组织组成,且厚度均匀;Sr-P涂层的腐蚀程度均比较低,且腐蚀产物比较致密,从而阻碍了合金进一步被腐蚀。结果表明,Sr-P涂层和Ca-P涂层都提高了合金试样的耐蚀性能,且Sr-P涂层的耐蚀性能优于Ca-P涂层,优于无涂层Mg-Zn-Zr-Gd合金。

关键词 Mg-Zn-Zr-Gd合金Sr-P涂层Ca-P涂层耐蚀性能    
Abstract

The effect of chemical conversion coatings Ca-P and Sr-P on the corrosion resistance of Mg-Zn-Zr-Gd alloy, which was solidified by pulsed magnetic field and then cast, was studied by means of immersion test, electrochemical measurement, scanning electron microscopy and other methods. This investigation revealed that the corrosion resistance of the substrate sample, which was solidified by pulsed magnetic field, was better than that of the substrate sample, which was solidified without pulsed magnetic field, and the corrosion resistance of the substrate sample has a certain influence on the corrosion resistance of the coating, the better the corrosion resistance of the substrate sample, the better the corrosion resistance of the coating prepared on the surface. In addition, different chemical coatings have different corrosion resistance, the Ca-P coating was composed of a large number of rod-shaped particles, which were unevenly distributed and relatively loose, and the thickness was non uniform, the observation of corrosion morphology of the Ca-P coating showed that loose corrosion products with large number of voids were formed in the coating. The Sr-P coating was composed of many fine granular with uniform thickness, the corrosion products of the Sr-P coating were relatively dense, which hindered the possibility of further corrosion of the alloy. The results showed that both Sr-P and Ca-P coatings can improve the corrosion resistance of the substrate, and the corrosion resistance of the Sr-P coating was better than that of the Ca-P coating.

Key wordsMg-Zn-Zr-Gd alloy    Sr-P coating    Ca-P coating    corrosion resistance
收稿日期: 2022-06-15      32134.14.1005.4537.2022.197
ZTFLH:  TG146.22  
基金资助:江西省科技重点研发项目(20212BBE53018);江西省教育厅科技项目(DA202103161)
通讯作者: 陈乐平,E-mail:jnnclp@163.com,研究方向为金属腐蚀与防护
Corresponding author: CHEN Leping, E-mail: jnnclp@163.com
作者简介: 毛训聪,男,1997年生,硕士生

引用本文:

毛训聪, 陈乐平, 彭聪. Ca-P涂层和Sr-P涂层对脉冲磁场下凝固的Mg-Zn-Zr-Gd合金耐蚀性的影响[J]. 中国腐蚀与防护学报, 2023, 43(3): 647-655.
MAO Xuncong, CHEN Leping, PENG Cong. Effect of Chemical Conversion Coatings Ca-P and Sr-P on Corrosion Resistance of Mg-Zn-Zr-Gd Alloy Cast After Solidifying by Pulsed Magnetic Field. Journal of Chinese Society for Corrosion and protection, 2023, 43(3): 647-655.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2022.197      或      https://www.jcscp.org/CN/Y2023/V43/I3/647

图1  未经及经过脉冲磁场处理合金的铸态形貌
图2  不同处理方式对合金的晶粒尺寸和第二相体积分数的影响
图3  脉冲磁场处理合金的不同涂层的微观组织
ElementRegion ARegion B
Mg0.250.73
Zn0.661.97
P45.1251.34
Ca51.79-
Sr-44.75
Zr2.180.92
表1  图3中标定区域A和B的EDS分析结果 (atomic fraction / %)
图4  两种涂层的XRD谱
图5  不同涂层的动电位极化曲线
SampleEcorr / V vs SCEIcorr / A·cm-2
M1-1.704.25×10-6
M9-1.683.42×10-6
Ca-P-M1-1.282.35×10-6
Ca-P-M9-1.269.24×10-7
Sr-P-M1-1.491.45×10-8
Sr-P-M9-1.411.09×10-8
表2  动电位极化曲线的Tafel拟合结果
图6  脉冲磁场处理试样的阻抗谱曲线
图7  Ca-P和Sr-P涂层的等效电路图
SampleRs / Ω·cm2Q-YoQ-nR1 / Ω·cm2Q-YoQ-nR2 / Ω·cm2R3 / Ω·cm2L
M134.233.551×10-50.4561.368×1021.226×1050.7494.007×1036.929×10329.03
M932.237.492×10-60.8273.555×1036.077×1050.3742.287×1021.173×1025.018
Ca-P-M110.667.238×10-70.9005.307×1032.736×1070.6811.165×10141.177×1032.570×103
Ca-P-M91.007×10-79.538×10-70.7997.803×1032.531×1080.8371.619×1031.450×10732.09
Sr-P-M11.929×10-47.737×10-90.9514.876×1046.082×1080.7946.948×105--
Sr-P-M97.064×10-52.819×10-80.8911.613×1051.289×1070.8299.811×105--
表3  脉冲磁场处理试样阻抗曲线的电路拟合结果
图8  六组脉冲试样在Hank's溶液中浸泡7 d后pH变化及腐蚀速率曲线
图9  不同基体表面在Hank's溶液中浸泡7 d后的腐蚀形貌
图10  不同基体表面的不同涂层在Hank's溶液中浸泡7 d后腐蚀形貌
图11  不同基体表面的不同涂层腐蚀示意图
1 Li H, Wen J B, He J G, et al. Current research status and prospect of Mg-Zn-Zr series bio-magnesium alloys [J]. Trans. Mater. Heat. Treat., 2019, 40(7): 1
1 李 欢, 文九巴, 贺俊光 等. Mg-Zn-Zr系生物镁合金研究现状及展望 [J]. 材料热处理学报, 2019, 40(7): 1
2 Yuan M H, Jiang B C, Tang L Y. Application and development of magnesium alloy in biomedicine [J]. Southern Agric. Mach., 2017, 48(23): 109
2 袁明华, 姜炳春, 唐联耀. 镁合金在生物医学上的应用与发展 [J]. 南方农机, 2017, 48(23): 109
3 Pan F S, Yang M B, Chen X H. A review on casting magnesium alloys: modification of commercial alloys and development of new alloys [J]. J. Mater. Sci. Technol., 2016, 32: 1211
doi: 10.1016/j.jmst.2016.07.001
4 Kim J K, Sandlöbes S, Raabe D. On the room temperature deformation mechanisms of a Mg-Y-Zn alloy with long-period-stacking-ordered structures [J]. Acta Mater., 2015, 82: 414
doi: 10.1016/j.actamat.2014.09.036
5 Chen K N, Guo C B. Research progress on biodegradable medical magnesium-based materials [J]. Int. J. Stomatol., 2021, 48: 322
5 陈克难, 郭传瑸. 可降解医用镁基金属生物材料的研究进展 [J]. 国际口腔医学杂志, 2021, 48: 322
6 Cui X J, Ping J. Research progress of microarc oxidation for corrosion prevention of Mg-alloys [J]. J. Chin. Soc. Corros. Prot., 2018, 38: 87
6 崔学军, 平 静. 微弧氧化及其在镁合金腐蚀防护领域的研究进展 [J]. 中国腐蚀与防护学报, 2018, 38: 87
doi: 10.11902/1005.4537.2018.036
7 Li N, Zheng Y F. Novel magnesium alloys developed for biomedical application: a review [J]. J. Mater. Sci. Technol., 2013, 29: 489
doi: 10.1016/j.jmst.2013.02.005
8 Song Y W, Qiao Y. Research progress of corrosion resistance of degradable medical magnesium alloys [J]. Rare Meter. Mat. Eng., 2021, 50: 1482
8 宋玉玮, 乔 阳. 可降解医用镁合金耐腐蚀性能研究进展 [J]. 稀有金属材料与工程, 2021, 50: 1482
9 Chen K, Zhang X B, Dai J W, et al. Enhanced mechanical and corrosion properties of NZ20K alloy by double extrusion and aging processes for biomedical applications [J]. Mater. Technol., 2016, 31: 210
doi: 10.1179/1753555715Y.0000000043
10 Li L Y, Cui L Y, Zeng R C, et al. Advances in functionalized polymer coatings on biodegradable magnesium alloys-A review [J]. Acta Biomater., 2018, 79: 23
doi: 10.1016/j.actbio.2018.08.030
11 Yang L H, Li J Q, Jiang W W, et al. Current status of surface treatment for magnesium alloy [J]. J. Chin. Soc. Corros. Prot., 2008, 28: 316
11 杨黎晖, 李峻青, 姜巍巍 等. 镁合金表面处理技术的研究进展 [J]. 中国腐蚀与防护学报, 2008, 28: 316
12 Muhaffel F, Cimenoglu H. Development of corrosion and wear resistant micro-arc oxidation coating on a magnesium alloy [J]. Surf. Coat. Technol., 2019, 357: 822
doi: 10.1016/j.surfcoat.2018.10.089
13 Zhou L L, Yi D Q, Deng S H, et al. A new environment-friendly anodizing process for magnesium alloys [J]. J. Chin. Soc. Corros. Prot., 2006, 26: 3176
13 周玲伶, 易丹青, 邓姝皓 等. 镁合金环保型阳极氧化工艺研究 [J]. 中国腐蚀与防护学报, 2006, 26: 3176
14 Xia K D, Pan H, Wang T L, et al. Effect of Ca/P ratio on the structural and corrosion properties of biomimetic Ca-P coatings on ZK60 magnesium alloy [J]. Mater. Sci. Eng., 2017, 72C: 676
15 Chen X B, Nisbet D R, Li R W, et al. Controlling initial biodegradation of magnesium by a biocompatible strontium phosphate conversion coating [J]. Acta Biomater., 2014, 10: 1463
doi: 10.1016/j.actbio.2013.11.016 pmid: 24291328
16 Cui X J, Dai X, Zheng B Y, et al. Effect of KH-550 content on structure and properties of a Micro-arc oxidation coating on Mg-alloy AZ31B [J]. J. Chin. Soc. Corros. Prot., 2017, 37: 227
16 崔学军, 代 鑫, 郑冰玉 等. KH-550对AZ31B镁合金表面微弧氧化膜结构及性能的影响 [J]. 中国腐蚀与防护学报, 2017, 37: 227
doi: 10.11902/1005.4537.2016.016
17 Shen X X, Sheng J W, Xu Q J, et al. Fabrication of Ca-P coating on AZ31 magnesium by electrochemical-assisted chemical conversion and evaluation of its corrosion resistance [J]. Mater. Prot., 2018, 51(5): 18
17 沈喜训, 盛俊威, 徐群杰 等. 镁合金表面Ca-P涂层的电化学辅助化学转化法制备及其耐蚀性研究 [J]. 材料保护, 2018, 51(5): 18
18 Jiang S T, Zeng X A, Ma Y C. Fabrication of Ca-P coating of Mg-Zn-Zr alloy and corrosion resistance [J]. J. Tianjin Univ. Technol., 2014, 30(6): 7
18 姜舒婷, 曾晓爱, 马玉春. Mg-Zn-Zr表面Ca-P涂层的制备及其降解性能研究 [J]. 天津理工大学学报, 2014, 30(6): 7
19 Chen J X. Study on properties and surface modification of biodegradable Mg-2Zn-xRE (Gd, Nd, Y)- 0.5Zr alloys [D]. Hefei: University of Science and Technology of China, 2019
19 陈军修. 生物可降解Mg-2Zn-xRE (Gd、Nd、Y)- 0.5Zr合金性能及其表面改性研究 [D]. 合肥: 中国科学技术大学, 2019
20 Wang J Q, Wang X. In vivo study of strontium-doped calcium phosphate cement for biological properties [J]. J. Peking Univ. (Health Sci.), 2021, 53: 378
20 王京旗, 王 霄. 掺锶磷酸钙骨水泥材料生物学性能的动物实验 [J]. 北京大学学报 (医学版), 2021, 53: 378
21 Huang Y, Yan Y J, Pang X F, et al. Bioactivity and corrosion properties of gelatin-containing and strontium-doped calcium phosphate composite coating [J]. Appl. Surf. Sci., 2013, 282: 583
doi: 10.1016/j.apsusc.2013.06.015
22 Li M, Yang X M, Lin X, et al. Effects of SrCaP-coated Mg alloy ZK60 on preosteoblast functions in mice [J]. Chin Orthop. J. Clin. Basic Res., 2013, 5: 40
22 李 梅, 杨小明, 林 潇 等. 含SrCaP涂层镁合金ZK60对小鼠前成骨细胞功能的影响 [J]. 中国骨科临床与基础研究杂志, 2013, 5: 40
23 Chen J X, Tan L L, Yu X M, et al. Effect of minor content of Gd on the mechanical and degradable properties of as-cast Mg-2Zn-xGd-0.5Zr alloys [J]. J. Mater. Sci. Technol., 2019, 35: 503
doi: 10.1016/j.jmst.2018.10.022
24 Zhang T, Li Y, Wang F. Roles of β phase in the corrosion process of AZ91D magnesium alloy [J]. Corros. Sci., 2006, 48: 1249
doi: 10.1016/j.corsci.2005.05.011
25 Song D, Ma A B, Jiang J H, et al. Corrosion behaviour of bulk ultra-fine grained AZ91D magnesium alloy fabricated by equal-channel angular pressing [J]. Corros. Sci., 2011, 53: 362
doi: 10.1016/j.corsci.2010.09.044
26 Kubásek J, Vojtěch D. Structural and corrosion characterization of biodegradable Mg-RE (RE=Gd, Y, Nd) alloys [J]. Trans. Nonferrous Met. Soc. China., 2013, 23: 1215
doi: 10.1016/S1003-6326(13)62586-8
27 Chen J X, Lu S H, Tan L L, et al. Comparative study on effects of different coatings on biodegradable and wear properties of Mg-2Zn-1Gd-0.5Zr alloy [J]. Surf. Coat. Technol., 2018, 352: 273
doi: 10.1016/j.surfcoat.2018.08.028
28 Shangguan Y M, Sun L N, Wan P, et al. Comparison study of different coatings on degradation performance and cell response of Mg-Sr alloy [J]. Mater. Sci. Eng., 2016, 69C: 95
29 Zhao C Y, Pan F S, Zhang L, et al. Microstructure, mechanical properties, bio-corrosion properties and cytotoxicity of as-extruded Mg-Sr alloys [J]. Mater. Sci. Eng., 2017, 70C: 1081
[1] 汪涵敏, 黄峰, 袁玮, 张佳伟, 王昕煜, 刘静. 新型Cu-Mo耐候钢在模拟海洋大气环境中的腐蚀行为[J]. 中国腐蚀与防护学报, 2023, 43(3): 507-515.
[2] 张小丽, 寻懋年, 梁小红, 张彩丽, 韩培德. 含Ce S31254超级奥氏体不锈钢析出相析出行为及耐蚀性[J]. 中国腐蚀与防护学报, 2023, 43(2): 384-390.
[3] 蒋芳芳, 云虹, 彭莉, 张依豪, 李卫顺, 代文静, 王保峰, 徐群杰. 原位聚合聚苯胺改性NiFe-LDH复合涂层的防护性能研究[J]. 中国腐蚀与防护学报, 2023, 43(2): 312-320.
[4] 郎丰军, 黄峰, 徐进桥, 李利巍, 岳江波, 刘静. Mg处理X70级抗酸性海底管线钢 (X70MOS) 成分设计及耐蚀性能研究[J]. 中国腐蚀与防护学报, 2021, 41(5): 617-624.
[5] 张浩然, 吴鸿燕, 王善林, 左瑶, 陈玉华, 尹立孟. 含硫化物夹杂的铁基非晶合金点蚀规律[J]. 中国腐蚀与防护学报, 2021, 41(4): 477-486.
[6] 刘海霞, 黄峰, 袁玮, 胡骞, 刘静. 690 MPa级高强贝氏体钢在模拟乡村大气中的腐蚀行为[J]. 中国腐蚀与防护学报, 2020, 40(5): 416-424.
[7] 黄勇, 王善林, 王帅星, 龚玉兵, 柯黎明. 含硫化物夹杂铁基块体非晶合金在HCl溶液中的腐蚀行为[J]. 中国腐蚀与防护学报, 2018, 38(2): 203-209.
[8] 李广宇, 雷明凯. γΝ相在硼酸溶液中钝化膜的组成及其半导体特性研究[J]. 中国腐蚀与防护学报, 2018, 38(1): 47-53.
[9] 张新芳,欧孝通,刘雷,雷惊雷,李凌杰. 镁合金表面无机-有机杂化硅膜的制备及其防护性能研究[J]. 中国腐蚀与防护学报, 2017, 37(5): 435-443.
[10] 谭何灵,周成,刘希辉,曹国明,张菁. Cr对Q420钢在高盐度大气环境下耐蚀性的影响[J]. 中国腐蚀与防护学报, 2017, 37(3): 267-372.
[11] 徐相英,葛芳芳,李朋,舒瑞,黄峰,李谋成. 非晶Ti-B基涂层的力学和耐蚀性能研究[J]. 中国腐蚀与防护学报, 2016, 36(6): 573-579.
[12] 马旭,李全安,井晓天. 热处理对Mg-10Gd-2.5Nd-0.5Zr合金组织和耐蚀性能的影响[J]. 中国腐蚀与防护学报, 2016, 36(2): 143-149.
[13] 睢文杰,赵文杰,张星,秦立光,彭叔森,乌学东,薛群基. 铜合金表面巯基官能有机硅溶胶-凝胶涂层中TEOS含量对其防腐性能的影响[J]. 中国腐蚀与防护学报, 2016, 36(1): 52-58.
[14] 胡新芳, 李辛庚, 樊志彬, 王晓明, 王学刚. 新型Zn-22Al-Mg-Re合金涂层性能研究[J]. 中国腐蚀与防护学报, 2013, 33(6): 521-526.
[15] 王淑艳,夏永平 刘 莉. C3H8O3含量对AZ91D镁合金微弧氧化过程及膜层特性的影响[J]. 中国腐蚀与防护学报, 2013, 33(3): 235-240.