Please wait a minute...
中国腐蚀与防护学报  2025, Vol. 45 Issue (2): 347-358     CSTR: 32134.14.1005.4537.2024.281      DOI: 10.11902/1005.4537.2024.281
  临氢关键材料服役行为研究专刊 本期目录 | 过刊浏览 |
地下储氢库J55钢氢环境下微生物腐蚀机理研究
姜慧芳1, 刘扬豪1, 刘莹1, 李迎超1(), 于浩波1, 赵博2, 陈曦3
1.中国石油大学(北京)新能源与材料学院 北京 102224
2.中国特种设备检测研究院 北京 100029
3.中国石油国际事业有限公司 北京 100027
Mechanism of Microbial Corrosion of J55 Steel in Hydrogen-containing Environments in Underground Hydrogen Storage Facilities
JIANG Huifang1, LIU Yanghao1, LIU Ying1, LI Yingchao1(), YU Haobo1, ZHAO Bo2, CHEN Xi3
1.College of New Energy and Materials, China University of Petroleum (Beijing), Beijing 102224, China
2.China Special Equipment Inspection and Research Institute, Beijing 100029, China
3.China Petroleum International Co., Ltd., Beijing 100027, China
引用本文:

姜慧芳, 刘扬豪, 刘莹, 李迎超, 于浩波, 赵博, 陈曦. 地下储氢库J55钢氢环境下微生物腐蚀机理研究[J]. 中国腐蚀与防护学报, 2025, 45(2): 347-358.
Huifang JIANG, Yanghao LIU, Ying LIU, Yingchao LI, Haobo YU, Bo ZHAO, Xi CHEN. Mechanism of Microbial Corrosion of J55 Steel in Hydrogen-containing Environments in Underground Hydrogen Storage Facilities[J]. Journal of Chinese Society for Corrosion and protection, 2025, 45(2): 347-358.

全文: PDF(27847 KB)   HTML
摘要: 

地下储氢库(UHS)成为目前大规模储氢的最优方案。然而在该工况下,氢气存在泄漏风险,与地下环境中的微生物、应力载荷等因素共同作用,对临氢金属材料造成危害。本文模拟储氢库氢泄露环境,采用四点弯曲法研究硫酸盐还原菌(SRB)、应力和微量(0.01%~1%)氢气耦合作用下J55钢的腐蚀行为规律和机理。结果表明:SRB促进阳极反应,加速J55钢的腐蚀,在J55钢表面形成明显点蚀。此外,应力的存在导致J55钢表面应力集中,促进了SRB对J55钢的局部腐蚀并且点蚀坑聚集引起裂纹的发展与生长。当应力、SRB和氢气共同存在时,随着氢气在溶液中含量的提高(0%,0.22%,0.44%),J55钢的最大点蚀深度明显增深,其腐蚀随之加重。SRB可以利用H2提供的电子进行代谢活动,生成H2S等腐蚀产物。氢气的存在进一步促进了裂纹扩展和点蚀坑的形成。

关键词 氢气SRB微生物腐蚀地下储氢    
Abstract

Underground hydrogen storage (UHS) has emerged as the optimal solution for large-scale hydrogen storage. In such case, however there is a risk of hydrogen leakage, which, in combination with factors like microorganisms and stress loads present in the underground environment, poses a threat to hydrogen-exposed metallic materials. Hence, the corrosion behavior of J55 steel in a simulated environment of hydrogen leakage in storage facilities with trace hydrogen (0.01%-1%) coupled with sulfate-reducing bacteria (SRB) and the presence stress was assessed via four-point bending method. The results indicate that SRB accelerates the anodic reaction and the corrosion of J55 steel, leading to significant pitting on the steel surface. Moreover, the presence of stress causes stress concentration on the surface of J55 steel, enhancing the localized corrosion induced by SRB, and promoting the development and growth of cracks associated with pit accumulation. When stress, SRB, and hydrogen coexist, an increase in hydrogen concentration in the system (0%, 0.22%, 0.44%) leads to a significant increase in the maximum pitting depth of J55 steel, exacerbating its corrosion. SRB can utilize electrons provided by H2 to produce corrosive byproducts such as H2S. The presence of hydrogen further facilitates crack propagation and pit formation.

Key wordshydrogen gas    sulfate-decuing bacteria    microbiologically influenced corrosion    underground hydrogen storgae
收稿日期: 2024-08-31      32134.14.1005.4537.2024.281
ZTFLH:  TG174  
基金资助:国家自然科学基金(51801232);国家市场监管总局创新科技人才计划青年拔尖人才项目(QNBJ202316);国家市场监管总局科技计划项目(2023MK200)
通讯作者: 李迎超,E-mail:liyc@cup.com.cn,研究方向为能源装备材料腐蚀与防护,微生物腐蚀机理与防治
Corresponding author: LI Yingchao, E-mail: liyc@cup.com.cn
作者简介: 姜慧芳,女,2000年生,硕士生
图1  J55钢试样和所用设备示意图
图2  在不同氢气含量条件下培养7 d后,J55钢方形和U形弯试样表面的固着细胞数量
图3  不同条件下实验7 d的表面腐蚀形态和EDS分析
图4  J55钢试样在无菌环境实验7 d天后去除腐蚀产物的表面腐蚀形貌
图5  J55钢表面在SRB环境中不同条件下实验7 d后试样去除腐蚀产物的表面腐蚀形貌
图6  不同条件下J55钢实验7 d后去除样品上腐蚀产物后最大点蚀坑的投影图像
图7  不同条件下实验7 d后去除试样上腐蚀产物后点蚀坑的深度宽度分布散点图
图8  J55钢在不同条件下的Nyquist和Bode图及等效电路
图9  J55钢试样在不同条件下培养7 d的Tafel曲线图
Experimental conditionIcorr / A·cm-2Ecorr (V) vs. Ag/AgClβa / V·dec-1βc / V·dec-1
Sterile + square specimen9.06 × 10-7-0.7070.105-0.111
Sterile + U-bend specimen1.73 × 10-6-0.6850.063-0.141
SRB + square specimen1.43 × 10-5-0.6230.073-0.041
SRB + U-bend specimen8.05 × 10-5-0.7550.409-0.032
SRB + U-bend specimen + 0.22%H28.18 × 10-5-0.8250.635-0.011
SRB + U-bend specimen + 0.44%H22.32 × 10-4-0.7590.617-0.018
表1  不同条件下培养7 d的J55钢U形弯试样和方形试样的Tafel 曲线拟合的电化学参数。
图10  有菌环境中不同条件下培养7 d后J55钢方形试样和U形弯试样横截面的 SEM 图像
图11  SRB、应力和氢气对J55钢腐蚀相互作用的机理图
1 Liu C W, Hong W M, Wang D C, et al. Research progress of underground hydrogen storage technology [J]. Oil Gas Storage Transp., 2023, 42: 841
1 刘翠伟, 洪伟民, 王多才 等. 地下储氢技术研究进展 [J]. 油气储运, 2023, 42: 841
2 Epelle E I, Obande W, Udourioh G A, et al. Perspectives and prospects of underground hydrogen storage and natural hydrogen [J]. Sustain. Energy Fuels, 2022, 6: 3324
3 Kalam S, Abu-Khamsin S A, Kamal M S, et al. A mini-review on underground hydrogen storage: production to field studies [J]. Energy Fuels, 2023, 37: 8128
4 Pan S Q, Zou C N, Wang H Z, et al. Development status of underground hydrogen storages and top ten technical challenges to efficient construction of gas reservoir-type underground hydrogen storages [J]. Nat. Gas Ind., 2023, 43(11): 164
4 潘松圻, 邹才能, 王杭州 等. 地下储氢库发展现状及气藏型储氢库高效建库十大技术挑战 [J]. 天然气工业, 2023, 43(11): 164
5 Thiyagarajan S R, Emadi H, Hussain A, et al. A comprehensive review of the mechanisms and efficiency of underground hydrogen storage [J]. J. Energy Storage, 2022, 51: 104490
6 Tarkowski R, Uliasz-Misiak B. Towards underground hydrogen storage: a review of barriers [J]. Renew. Sustain. Energy Rev., 2022, 162: 112451
7 Berta M, Dethlefsen F, Ebert M, et al. Geochemical effects of millimolar hydrogen concentrations in groundwater: an experimental study in the context of subsurface hydrogen storage [J]. Environ. Sci. Technol., 2018, 52: 4937
8 Javaherdashti R. Editorial: microbiologically influenced corrosion (MIC): its mechanisms, technological, economic, and environmental impacts [J]. Front. Microbiol., 2023, 14: 1249565
9 Dopffel N, Jansen S, Gerritse J. Microbial side effects of underground hydrogen storage-knowledge gaps, risks and opportunities for successful implementation [J]. Int. J. Hydrog. Energy, 2021, 46: 8594
10 Li Y C, Feng S Q, Liu H M, et al. Bacterial distribution in SRB biofilm affects MIC pitting of carbon steel studied using FIB-SEM [J]. Corros. Sci., 2020, 167: 108512
11 Ugarte E R, Salehi S. A review on well integrity issues for underground hydrogen storage [J]. J. Energy Resour. Technol., 2022, 144: 042001
12 Zivar D, Kumar S, Foroozesh J. Underground hydrogen storage: a comprehensive review [J]. Int. J. Hydrog. Energy, 2021, 46: 23436
13 Zhu Y Y, Huang Y L, Huang S D, et al. Hydrogen permeation of 16Mn steel in sea mud with sulfate reducing bacteria [J]. Corros. Sci. Prot. Technol., 2008, 20: 118
13 朱永艳, 黄彦良, 黄偲迪 等. 16Mn钢在海泥中的氢渗透行为研究 [J]. 腐蚀科学与防护技术, 2008, 20: 118
14 Li Y C, Xu D K, Chen C F, et al. Anaerobic microbiologically influenced corrosion mechanisms interpreted using bioenergetics and bioelectrochemistry: a review [J]. J. Mater. Sci. Technol., 2018, 34: 1713
doi: 10.1016/j.jmst.2018.02.023
15 Pichler M. Underground sun storage results and outlook [A]. EAGE/DGMK Joint Workshop on Underground Storage of Hydrogen [C]. Hamburg, 2019: 1
16 Papadias D D, Ahluwalia R K. Bulk storage of hydrogen [J]. Int. J. Hydrog. Energy, 2021, 46: 34527
17 Wu M, Gong K, Xie F. Effect of sulfate reducing bacteria and stress on corrosion behavior of X100 steel in sea mud environment [J]. J. Electroanal. Chem., 2021, 886: 115129
18 Li Z, Yang J K, Lu S H, et al. X80 U-bend stress corrosion cracking (SCC) crack tip dissolution by fast corroding Desulfovibrio ferrophilus IS5 biofilm [J]. Process Saf. Environ. Prot., 2023, 178: 56
19 Pu Y N, Chen S G, Man C, et al. Investigation on the stress corrosion cracking behavior and mechanism of 90/10 copper-nickel alloy under the cooperative effect of tensile stress and Desulfovibrio vulgaris [J]. Corros. Sci., 2023, 225: 111617
20 Wu T Q, Zhou Z F, Wang X M, et al. Thermodynamic and dynamic analyses of microbiologically assisted cracking [J]. J. Chin. Soc. Corros. Prot., 2019, 39: 227
20 吴堂清, 周昭芬, 王鑫铭 等. 微生物致裂的热力学和动力学分析 [J]. 中国腐蚀与防护学报, 2019, 39: 227
doi: 10.11902/1005.4537.2018.068
21 Sun D X, Wang D N, Li L, et al. Study on stress corrosion behavior and mechanism of X70 pipeline steel with the combined action of sulfate-reducing bacteria and constant load [J]. Corros. Sci., 2023, 213: 110968
22 Liu Z Y, Li Z S, Zhan X L, et al. Growth behavior and mechanism of stress corrosion cracks of X80 pipeline steel in simulated Yingtan soil solution [J]. Acta Metall. Sin., 2016, 52: 965
doi: 10.11900/0412.1961.2015.00548
22 刘智勇, 李宗书, 湛小琳 等. X80钢在鹰潭土壤模拟溶液中应力腐蚀裂纹扩展行为机理 [J]. 金属学报, 2016, 52: 965
doi: 10.11900/0412.1961.2015.00548
23 Wu T Q, Ding W C, Zeng D C, et al. Microbiologically induced corrosion of X80 pipeline steel in an acid soil solution: (Ⅰ) electrochemical analysis [J]. J. Chin. Soc. Corros. Prot., 2014, 34: 346
23 吴堂清, 丁万成, 曾德春 等. 酸性土壤浸出液中X80钢微生物腐蚀研究: (Ⅰ)电化学分析 [J]. 中国腐蚀与防护学报, 2014, 34: 346
doi: 10.11902/1005.4537.2014.044
24 Li J Y, Zeng T H, Liu Y T, et al. Corrosion behavior of 4Cr16Mo martensite stainless steel with 1% Cu addition by applied stress [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 1094
24 李佳媛, 曾天昊, 刘友通 等. 加铜4Cr16Mo马氏体不锈钢在应力作用下的腐蚀研究 [J]. 中国腐蚀与防护学报, 2023, 43: 1094
doi: 10.11902/1005.4537.2023.132
25 Yang X J, Shao J M, Liu Z Y, et al. Stress-assisted microbiologically influenced corrosion mechanism of 2205 duplex stainless steel caused by sulfate-reducing bacteria [J]. Corros. Sci., 2020, 173: 108746
26 Wu T Q, Yan M C, Yu L B, et al. Stress corrosion of pipeline steel under disbonded coating in a SRB-containing environment [J]. Corros. Sci., 2019, 157: 518
27 Wu T Q, Zhou Z F, Wang X M, et al. Bacteria assisted cracking of X80 pipeline steel under the actions of elastic and plastic stresses [J]. Surf. Technol., 2019, 48(7): 285
27 吴堂清, 周昭芬, 王鑫铭 等. 弹塑性应力作用下X80管线钢的菌致开裂行为 [J]. 表面技术, 2019, 48(7): 285
28 Yu D Y, Liu Z Y, Du C W, et al. Research progress and prospect of stress corrosion cracking of pipeline steel in soil environments [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 737
28 余德远, 刘智勇, 杜翠薇 等. 管线钢土壤应力腐蚀开裂研究进展及展望 [J]. 中国腐蚀与防护学报, 2021, 41: 737
doi: 10.11902/1005.4537.2020.211
29 Guo H H, Zhong R, Liu B, et al. Characteristic and mechanistic investigation of stress-assisted microbiologically influenced corrosion of X80 steel in near-neutral solutions [J]. Materials (Basel), 2023, 16: 390
30 Gu T Y, Jia R, Unsal T, et al. Toward a better understanding of microbiologically influenced corrosion caused by sulfate reducing bacteria [J]. J. Mater. Sci. Technol., 2019, 35: 631
doi: 10.1016/j.jmst.2018.10.026
31 Amirthan T, Perera M S A. Underground hydrogen storage in Australia: a review on the feasibility of geological sites [J]. Int. J. Hydrog. Energy, 2023, 48: 4300
[1] 许竞翔, 黄睿阳, 褚振华, 蒋全通. FeNiCoCrW0.2Al0.1 高熵合金在硫酸盐还原菌溶液环境下的腐蚀研究[J]. 中国腐蚀与防护学报, 2025, 45(2): 460-468.
[2] 燕冰川, 曾云鹏, 张宁, 史显波, 严伟. 石油管材用含Cu钢焊接接头的微生物腐蚀研究[J]. 中国腐蚀与防护学报, 2025, 45(2): 479-488.
[3] 王娅利, 管方, 段继周, 张丽娜, 杨政险, 侯保荣. 鼠李糖脂与2,2-二溴-3-次氮基丙酰胺协同抑制X80管线钢的微生物腐蚀[J]. 中国腐蚀与防护学报, 2024, 44(6): 1412-1422.
[4] 李鑫, 韦博鑫, 鲁仰辉, 孙晨, 于文涛, 徐猛, 刘伟. 临氢环境下管线钢氢损伤机理研究进展[J]. 中国腐蚀与防护学报, 2024, 44(5): 1125-1133.
[5] 柯楠, 倪莹莹, 何嘉淇, 柳海宪, 金正宇, 刘宏伟. 微生物胞外聚合物引起的金属腐蚀的研究进展[J]. 中国腐蚀与防护学报, 2024, 44(2): 278-294.
[6] 裴莹莹, 管方, 董续成, 张瑞永, 段继周, 侯保荣. Desulfovibrio Bizertensis SY-1在阴极极化条件下对X70 管线钢的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2024, 44(2): 345-354.
[7] 吴佳佳, 徐鸣, 王鹏, 张盾. 天然海水中硝酸盐的添加对EH40钢腐蚀的影响[J]. 中国腐蚀与防护学报, 2023, 43(4): 765-772.
[8] 马凯军, 王萌萌, 史振龙, 陈长风, 贾小兰. 温度对原油储罐罐底微生物腐蚀影响规律的研究[J]. 中国腐蚀与防护学报, 2022, 42(6): 1051-1057.
[9] 许萍, 赵美惠, 白鹏凯. 循环冷却水中HEDP对铁细菌腐蚀影响及机理研究[J]. 中国腐蚀与防护学报, 2022, 42(6): 988-994.
[10] 李振欣, 吕美英, 杜敏. 海水环境中组合电位极化对铁氧化菌腐蚀的影响[J]. 中国腐蚀与防护学报, 2022, 42(2): 211-217.
[11] 刘珺, 耿永娟, 李绍纯, 徐爱玲, 侯东帅, 刘昂, 郎秀璐, 陈旭, 刘国锋. TEOS/IBTS涂层对海洋潮汐区混凝土微生物污损防护效果研究[J]. 中国腐蚀与防护学报, 2022, 42(1): 135-142.
[12] 何勇君, 张天遂, 王海涛, 张斐, 李广芳, 刘宏芳. 微生物腐蚀杀菌剂研究进展[J]. 中国腐蚀与防护学报, 2021, 41(6): 748-756.
[13] 吕美英, 李振欣, 杜敏, 万紫轩. 培养基对微生物腐蚀的影响[J]. 中国腐蚀与防护学报, 2021, 41(6): 757-764.
[14] 张斐, 王海涛, 何勇君, 张天遂, 刘宏芳. 成品油输送管道微生物腐蚀案例分析[J]. 中国腐蚀与防护学报, 2021, 41(6): 795-803.
[15] 刘宏宇, 张喜庆, 滕莹雪, 李胜利. 含铜低碳钢在海洋环境下的耐蚀和防污性能的研究[J]. 中国腐蚀与防护学报, 2021, 41(5): 679-685.