Please wait a minute...
中国腐蚀与防护学报  2025, Vol. 45 Issue (2): 479-488     CSTR: 32134.14.1005.4537.2024.101      DOI: 10.11902/1005.4537.2024.101
  研究报告 本期目录 | 过刊浏览 |
石油管材用含Cu钢焊接接头的微生物腐蚀研究
燕冰川1, 曾云鹏2,3, 张宁1, 史显波2(), 严伟2
1.国家管网集团储运技术发展有限公司 天津 300457
2.中国科学院金属研究所 沈阳 110016
3.中国特种设备检测研究院长三角分院 嘉兴 314000
Microbiologically Influenced Corrosion of Cu-bearing Steel Welded Joints for Petroleum Pipes
YAN Bingchuan1, ZENG Yunpeng2,3, ZHANG Ning1, SHI Xianbo2(), YAN Wei2
1.PipeChina Storage and Transportation Technology Company, Tianjin 300457, China
2.Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
3.China Special Equipment Inspection & Research Institute Yangtze Delta Branch, Jiaxing 314000, China
引用本文:

燕冰川, 曾云鹏, 张宁, 史显波, 严伟. 石油管材用含Cu钢焊接接头的微生物腐蚀研究[J]. 中国腐蚀与防护学报, 2025, 45(2): 479-488.
Bingchuan YAN, Yunpeng ZENG, Ning ZHANG, Xianbo SHI, Wei YAN. Microbiologically Influenced Corrosion of Cu-bearing Steel Welded Joints for Petroleum Pipes[J]. Journal of Chinese Society for Corrosion and protection, 2025, 45(2): 479-488.

全文: PDF(22132 KB)   HTML
摘要: 

利用电化学测试和短时浸泡实验研究了石油管材用含Cu钢焊接接头不同区域,包括母材(BM)、热影响区(HAZ)、焊缝(WM)的微生物腐蚀行为。生物膜微观形貌结果表明,BM区域细菌生物膜均匀致密,而WM和HAZ区域的细菌生物膜松散聚集。电化学结果表明,BM试样(Rct + Rf)电阻值随浸泡时间的延长稳定增加,而WM和HAZ试样的(Rct + Rf)电阻值出现波动现象。最终导致BM试样表面点蚀坑少且浅,而WM和HAZ试样表面的点蚀坑小而深且聚集分布。分析认为,WM和HAZ的组织不均匀性为细菌选择性附着提供了位点,由此造成的生物膜微观不均匀分布促进了不同区域组织之间的局部腐蚀是WM和HAZ耐蚀性较差的主要原因。

关键词 含Cu钢焊接接头显微组织微生物腐蚀    
Abstract

Welding joints are not only weak areas of conventional corrosion, but also preferred locations for microbiologically influenced corrosion (MIC). In this article, MIC behavior of different regions of the Cu-bearing steel welded joint, including the base metal (BM), heat affected zone (HAZ), and weld metal (WM), was studied by immersion test in SRB containing solution with electrochemical measurement.Results showed that a uniform and dense bacterial biofilm was formed and covered on the BM specimen, while a loose porous one on WM and HAZ specimens. The electrochemical results indicated that the (Rct + Rf) value of BM specimen increased steadily with the prolonging immersion time, while that of WM and HAZ specimens fluctuated. As a result, a few of shallow pits were observed on the surface of BM specimen, but many small and deep pits distributed in clusters appeared on the surface of WM and HAZ specimens. Analysis suggested that the microstructure inhomogeneity of WM and HAZ specimens provides sites for bacterial selective adhesion, resulting in biofilm with microscopically heterogeneous surface morphology, which promote local corrosion. Thus, the MIC resistance of WM and HAZ specimens is lower than that of BM specimen.

Key wordsCu-bearing steel    welded joint    microstructure    microbiologically influenced corrosion
收稿日期: 2024-03-28      32134.14.1005.4537.2024.101
ZTFLH:  TG142.1  
基金资助:国家自然科学基金(52201093)
通讯作者: 史显波,E-mail:xbshi@imr.ac.cn,研究方向为先进钢铁结构材料的研究及应用
Corresponding author: SHI Xianbo, E-mail: xbshi@imr.ac.cn
作者简介: 燕冰川,男,1979年生,博士,正高级工程师
MaterialCMnCuNiTiNbPSSiMoAlFe
Base metal0.0280.521.351.100.0110.0170.0030.0020.13-0.01Bal.
Filler wire0.0330.561.831.94-0.018---0.10-Bal.
表1  钢板母材和焊丝的化学成分 (mass fraction / %)
图1  焊接接头中组织和性能检测的取样位置示意图
图2  焊接接头的宏观形貌
图3  时效前焊接接头不同部位的显微组织形貌
图4  时效后的焊接接头不同部位的显微组织形貌
SampleYS / MPaUTS / MPaEL / %Akv / J
Base metal-as-rolled40349133.531
Base metal-550 oC/2 h54263327.529
Weld joint-as-rolled41951523.521
Weld joint-550 oC/2 h52563020.517
表2  母材和焊接接头的拉伸性能和冲击性能
图5  焊接接头不同部位在接种SRB的溶液中浸泡14 d后的CLSM图像
图6  焊接接头的不同部位试样表面固着活/死细菌数量统计结果
图7  母材和焊接接头的不同部位在接菌溶液中的Nyquist谱图随时间的变化
图8  用于阻抗谱拟合的等效电路模型
AreaTime / dRs / Ω·cm2Yf / S·s n ·cm-2nfRf / Ω·cm2Ydl / S·s n ·cm-2ndlRct / Ω·cm2χ2
BM13395.77 × 10-40.6071953.61 × 10-40.9243.70 × 1052.97 × 10-5
43236.55 × 10-40.6291472.43 × 10-40.9113.85 × 1055.82 × 10-4
72686.72 × 10-40.64093.32.19 × 10-40.9144.02 × 1051.29 × 10-4
102467.23 × 10-40.63273.51.97 × 10-40.9164.06 × 1051.03 × 10-4
142385.54 × 10-40.68844.21.77 × 10-40.9004.39 × 1053.23 × 10-4
WM13203.02 × 10-40.7791014.26 × 10-40.8972.33 × 1059.16 × 10-4
43052.85 × 10-40.81366.83.23 × 10-40.8773.32 × 1056.94 × 10-4
72467.07 × 10-40.76088.27.62 × 10-40.8683.35 × 1041.16 × 10-4
102312.30 × 10-40.73137.72.81 × 10-40.8803.14 × 1053.28 × 10-4
141351.46 × 10-30.6602743.09 × 10-30.9388.86 × 1041.02 × 10-4
HAZ12793.40 × 10-40.76087.33.85 × 10-40.8663.45 × 1059.38 × 10-4
42623.79 × 10-40.75588.33.92 × 10-40.8703.47 × 1051.92 × 10-4
72556.99 × 10-40.7221256.47 × 10-40.8934.09 × 1041.38 × 10-4
102133.00 × 10-40.79246.03.23 × 10-40.8782.20 × 1054.98 × 10-4
141481.43 × 10-40.7031933.03 × 10-30.9379.46 × 1041.21 × 10-4
表3  EIS数据拟合结果
图9  母材和焊接接头的不同部位在接菌溶液中的(Rct+ Rf)随时间的变化曲线
图10  母材和焊接接头的不同部位在接菌溶液中浸泡14 d后的表面形貌及相应位置的EDS分析
图11  母材和焊接接头的不同部位在接菌溶液中浸泡14 d后的表面腐蚀形貌和最大点蚀坑形貌
1 Shi X B, Yang C G, Yan W, et al. Microbiologically influenced corrosion of pipeline steels [J]. J. Chin. Soc. Corros. Prot., 2019, 39: 9
1 史显波, 杨春光, 严 伟 等. 管线钢的微生物腐蚀 [J]. 中国腐蚀与防护学报, 2019, 39: 9
doi: 10.11902/1005.4537.2018.147
2 Lin J, Zhu G W, Sun C, et al. A review of microbiologically influenced corrosion of metals [J]. Corros. Sci. Prot. Technol., 2001, 13: 279
2 林 建, 朱国文, 孙 成 等. 金属的微生物腐蚀 [J]. 腐蚀科学与防护技术, 2001, 13: 279
3 Yang K, Shi X B, Yan W, et al. Novel Cu-bearing pipeline steels: A new strategy to improve resistance to microbiologically influenced corrosion for pipeline steels [J]. Acta Metall. Sin., 2020, 56: 385
doi: 10.11900/0412.1961.2019.00372
3 杨 柯, 史显波, 严 伟 等. 新型含Cu管线钢—提高管线耐微生物腐蚀性能的新途径 [J]. 金属学报, 2020, 56: 385
4 Shi X B, Yan W, Shan Y Y, et al. Research and development of new pipeline steels with resistance to microbiologically influenced corrosion [J]. J. Iron Steel Res., 2020, 32: 1044
doi: 10.13228/j.boyuan.issn1001-0963.20200212
4 史显波, 严 伟, 单以银 等. 耐微生物腐蚀管线钢新材料的研究与发展 [J]. 钢铁研究学报, 2020, 32: 1044
doi: 10.13228/j.boyuan.issn1001-0963.20200212
5 Shi X B, Yan W, Xu D K, et al. Microbial corrosion resistance of a novel Cu-bearing pipeline steel [J]. J. Mater. Sci. Technol., 2018, 34: 2480
doi: 10.1016/j.jmst.2018.05.020
6 Yu H B, Chen X, Liu Q P, et al. Anti microbiological corrosion performance of Cu-containing antibacterial pipeline steel [J]. Corros. Prot., 2020, 41(3): 10, 21
6 于浩波, 陈 旭, 刘乔平 等. 含Cu抗菌管线钢的抑制微生物腐蚀性能 [J]. 腐蚀与防护, 2020, 41(3): 10, 21
7 Qiao Q, Cheng G X, Wu W, et al. Failure analysis of corrosion at an inhomogeneous welded joint in a natural gas gathering pipeline considering the combined action of multiple factors [J]. Eng. Fail. Anal., 2016, 64: 126
8 Jiang X, Xu K, Guan X R, et al. A comparative study on the corrosion of gathering pipelines in two sections of a shale gas field [J]. Eng. Fail. Anal., 2021, 121: 105179
9 Zhu L Y. Microbiological influenced corrosion of X80 pipeline and weld microstructure [D]. Shenyang: Shenyang Ligong University, 2020
9 祝李洋. X80管线钢及其焊缝组织的微生物腐蚀 [D]. 沈阳: 沈阳理工大学, 2020
10 Wang Q, Ma Q, Wu T Q, et al. Selective corrosion of X80 pipeline steel welded joints induced by sulfate-reducing bacteria [A]. The 11th National Conference on Corrosion and Protection [C]. Shenyang, 2021: 763
10 王 琴, 马 乔, 吴堂清 等. X80管线钢焊接接头的选择性SRB腐蚀 [A]. 第十一届全国腐蚀与防护大会论文摘要集 [C]. 沈阳, 2021: 763
11 Wang Q, Zhou X B, Ma Q, et al. Selected corrosion of X80 pipeline steel welded joints induced by Desulfovibrio desulfuricans [J]. Corros. Sci., 2022, 202: 110313
12 Shi X B, Zeng Y P, Ren Y, et al. Effect of nano-sized Cu-rich phase on microbiological corrosion behavior of Cu and Ni-added steel for oil country tubular goods [J]. ISIJ Int., 2024, 64: 1047
13 Zeng Y P, Yan W, Shi X B, et al. Effect of copper content on the MIC resistance in pipeline steel [J]. Acta Metall. Sin., 2024, 60: 43
doi: 10.11900/0412.1961.2022.00007
13 曾云鹏, 严 伟, 史显波 等. Cu含量对管线钢耐微生物腐蚀性能的影响 [J]. 金属学报, 2024, 60: 43
doi: 10.11900/0412.1961.2022.00007
14 Liu Z, Wei J S, Cui B, et al. Weld structure and mechanical properties of 590 MPa high strength steel thin slab in vertical position double-sided arc welding [J]. Mater. Sci. Technol., 2016, 24(5): 34
14 刘 政, 魏金山, 崔 冰 等. 590 MPa级高强钢双面双弧立焊焊缝组织性能 [J]. 材料科学与工艺, 2016, 24(5): 34
15 Cui B, Peng Y, Zhao L, et al. Effects of weld thermal cycle on microstructure and properties of 1000MPa grade weld metal [J]. Mater. Sci. Technol., 2016, 24(1): 44
15 崔 冰, 彭 云, 赵 琳 等. 焊接热循环对1000MPa级焊缝金属组织性能的影响 [J]. 材料科学与工艺, 2016, 24(1): 44
16 Wang Y D, Shang J L, Sun B, et al. Effect of different welding process on microstructure and properties of P92 steel welded joint [J]. J. Iron Steel Res., 2023, 35: 1152
doi: 10.13228/j.boyuan.issn1001-0963.20220344
16 王宇冬, 尚建路, 孙 斌 等. 不同焊接工艺对P92钢焊接接头组织性能的影响 [J]. 钢铁研究学报, 2023, 35: 1152
doi: 10.13228/j.boyuan.issn1001-0963.20220344
17 Ma G, Gu Y H, Zhao J. Research progress on sulfate-reducing bacteria induced corrosion of steels [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 289
17 马 刚, 顾艳红, 赵 杰. 硫酸盐还原菌对钢材腐蚀行为的研究进展 [J]. 中国腐蚀与防护学报, 2021, 41: 289
18 Ke N, Ni Y Y, He J Q, et al. Research progress of metal corrosion caused by extracellular polymeric substances of microorganisms [J]. J. Chin. Soc. Corros. Prot., 2024, 44: 278
18 柯 楠, 倪莹莹, 何嘉淇 等. 微生物胞外聚合物引起的金属腐蚀的研究进展 [J]. 中国腐蚀与防护学报, 2024, 44: 278
19 Li Q S, Wang J H, Xing X T, et al. Corrosion behavior of X65 steel in seawater containing sulfate reducing bacteria under aerobic conditions [J]. Bioelectrochemistry, 2018, 122: 40
doi: S1567-5394(17)30592-3 pmid: 29547738
20 Gu T Y, Jia R, Unsal T, et al. Toward a better understanding of microbiologically influenced corrosion caused by sulfate reducing bacteria [J]. J. Mater. Sci. Technol., 2019, 35: 631
doi: 10.1016/j.jmst.2018.10.026
21 De Romero M, Duque Z, Rodríguez L, et al. A study of microbiologically induced corrosion by sulfate-reducing bacteria on carbon steel using hydrogen permeation [J]. Corrosion, 2005, 61: 68
22 Li K, Whitfield M, Van Vliet K J. Beating the bugs: roles of microbial biofilms in corrosion [J]. Corros. Rev., 2013, 31: 73
23 Kim K T, Tsuchiya H, Hanaki K, et al. Modification of rust layer on carbon steel with reactive actions of metallic cations for improved corrosion protectiveness [J]. Corrosion, 2020, 76: 335
24 Wang L W, Liu Z Y, Cui Z Y, et al. In situ corrosion characterization of simulated weld heat affected zone on API X80 pipeline steel [J]. Corros. Sci., 2014, 85: 401
25 Walsh D, Pope D, Danford M, et al. The effect of microstructure on microbiologically influenced corrosion [J]. JOM, 1993, 45: 22
26 Zhu J Y, Xu L N, Feng Z C, et al. Galvanic corrosion of a welded joint in 3Cr low alloy pipeline steel [J]. Corros. Sci., 2016, 111: 391
[1] 姜慧芳, 刘扬豪, 刘莹, 李迎超, 于浩波, 赵博, 陈曦. 地下储氢库J55钢氢环境下微生物腐蚀机理研究[J]. 中国腐蚀与防护学报, 2025, 45(2): 347-358.
[2] 翟熙伟, 刘士一, 王丽, 贾瑞灵, 张慧霞. 载荷对5383铝合金焊接接头电化学腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2025, 45(2): 515-522.
[3] 许竞翔, 黄睿阳, 褚振华, 蒋全通. FeNiCoCrW0.2Al0.1 高熵合金在硫酸盐还原菌溶液环境下的腐蚀研究[J]. 中国腐蚀与防护学报, 2025, 45(2): 460-468.
[4] 王娅利, 管方, 段继周, 张丽娜, 杨政险, 侯保荣. 鼠李糖脂与2,2-二溴-3-次氮基丙酰胺协同抑制X80管线钢的微生物腐蚀[J]. 中国腐蚀与防护学报, 2024, 44(6): 1412-1422.
[5] 赵骞, 张洁, 毛锐锐, 缪春辉, 卞亚飞, 滕越, 汤文明. Q235钢结构件表面热镀锌层的应力腐蚀及其机理[J]. 中国腐蚀与防护学报, 2024, 44(5): 1305-1315.
[6] 刘久云, 董立谨, 张言, 王勤英, 刘丽. 油气田异种金属焊接接头硫化物应力腐蚀开裂研究进展[J]. 中国腐蚀与防护学报, 2024, 44(4): 863-873.
[7] 朱慧文, 郑黎, 张昊, 于宝义, 崔志博. BeWE43镁合金高温氧化行为及阻燃性的影响[J]. 中国腐蚀与防护学报, 2024, 44(4): 1022-1028.
[8] 柯楠, 倪莹莹, 何嘉淇, 柳海宪, 金正宇, 刘宏伟. 微生物胞外聚合物引起的金属腐蚀的研究进展[J]. 中国腐蚀与防护学报, 2024, 44(2): 278-294.
[9] 邓志彬, 胡枭, 刘应彦, 岳航, 张千, 汤海平, 鲁锐. 在役环境磁场对L360管线钢及焊接接头腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2024, 44(2): 471-479.
[10] 裴莹莹, 管方, 董续成, 张瑞永, 段继周, 侯保荣. Desulfovibrio Bizertensis SY-1在阴极极化条件下对X70 管线钢的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2024, 44(2): 345-354.
[11] 谢云, 刘婷, 王雯, 周佳琳, 唐颂. 微观组织对一种超轻高强镁锂合金耐蚀性的影响[J]. 中国腐蚀与防护学报, 2024, 44(1): 255-260.
[12] 廖敏行, 刘俊, 董宝军, 冷雪松, 蔡泽伦, 武俊伟, 贺建超. 盐雾环境对1Cr18Ni9Ti钎焊接头的影响研究[J]. 中国腐蚀与防护学报, 2023, 43(6): 1312-1318.
[13] 罗维华, 王海涛, 于林, 许实, 刘朝信, 郭宇, 王廷勇. Zn含量对Al-Zn-In-Mg牺牲阳极电化学性能的影响[J]. 中国腐蚀与防护学报, 2023, 43(5): 1071-1078.
[14] 吴佳佳, 徐鸣, 王鹏, 张盾. 天然海水中硝酸盐的添加对EH40钢腐蚀的影响[J]. 中国腐蚀与防护学报, 2023, 43(4): 765-772.
[15] 程鹏, 刘静, 牟文广, 黄峰, 黄先球, 庞涛. 690 MPa级耐候桥梁钢焊接接头在模拟工业大气环境下的耐蚀性研究[J]. 中国腐蚀与防护学报, 2023, 43(1): 95-103.