Please wait a minute...
中国腐蚀与防护学报  2022, Vol. 42 Issue (6): 988-994          DOI: 10.11902/1005.4537.2022.123
  研究报告 本期目录 | 过刊浏览 |
循环冷却水中HEDP对铁细菌腐蚀影响及机理研究
许萍(), 赵美惠, 白鹏凯
北京建筑大学 城市雨水系统与水环境教育部重点试验室 水环境国家级试验教学示范中心 北京 100044
Effect of Hydroxyethylidene Diphosphonic Acid on Iron Bacteria Induced Corrosion of Carbon Steel in Circulating Cooling Water
XU Ping(), ZHAO Meihui, BAI Pengkai
National Demonstration Center for Experimental Water Environment Education, Key Laboratory of Urban Stormwater System and Water Environment, Ministry of Education, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
引用本文:

许萍, 赵美惠, 白鹏凯. 循环冷却水中HEDP对铁细菌腐蚀影响及机理研究[J]. 中国腐蚀与防护学报, 2022, 42(6): 988-994.
Ping XU, Meihui ZHAO, Pengkai BAI. Effect of Hydroxyethylidene Diphosphonic Acid on Iron Bacteria Induced Corrosion of Carbon Steel in Circulating Cooling Water[J]. Journal of Chinese Society for Corrosion and protection, 2022, 42(6): 988-994.

全文: PDF(2080 KB)   HTML
摘要: 

采用腐蚀失重法、电化学技术、扫描电镜 (SEM)、X射线光电子能谱 (XPS)、原子力显微镜 (AFM)、激光共聚焦显微镜 (CLSM) 和生化技术等手段,探究了循环冷却水系统中碳钢表面羟基乙叉二膦酸 (HEDP) 对铁细菌 (IB) 的腐蚀行为和生物膜特性的影响及机理。结果表明,HEDP使铁细菌腐蚀速率降低了68.72%,腐蚀电流密度减小了56.93%,腐蚀电位正移,且极化曲线中阴极斜率的增幅远高于阳极,说明了HEDP通过减缓阴极反应抑制了铁细菌的腐蚀;与此同时,在HEDP的作用下,铁细菌增加了0.3~1.0个数量级,EPS分泌量上升了23.91%,生物膜结构为IB-EPS-IB,反映出HEDP能够刺激铁细菌的生长和EPS的分泌,导致生物膜结构薄且致密。本研究可为深入探讨循环冷却水系统中的腐蚀理论及其控制方法提供支持。

关键词 HEDP铁细菌微生物腐蚀碳钢循环冷却水    
Abstract

The effect of hydroxyethylidene diphosphonic acid (HEDP) on the corrosion behavior and biofilm properties of iron bacteria (IB) on carbon steel surface in the circulating cooling water system was investigated by means of corrosion mass loss method, electrochemical technology, scanning electron microscope (SEM), X-ray photoelectron spectroscopy (XPS), atomic force microscope (AFM), confocal laser microscope (CLSM) and biochemical technology. The results showed that in the presence of HEDP, the iron bacteria induced corrosion rate of carbon steel reduced by 68.72%, correspondingly the corrosion current density decreased by 56.93%, the corrosion potential shifted positively, and the increase in the slope of the cathode in the polarization curve was much higher than that of the anode. The cathodic reaction inhibited the corrosion of iron bacteria; at the same time, under the action of HEDP, iron bacteria increased by 0.3~1.0 orders of magnitude, the secretion amount of extracellular polymeric substance (EPS) increased by 23.91%, and the biofilm structure was IB-EPS-IB, which reflected that the presence of HEDP was able to stimulate the growth of iron bacteria and the secretion of EPS, resulting in the formation of a thin and compact biofilm. This study can provide support for the in-depth study of corrosion theory and control methods in circulating cooling water systems.

Key wordsHEDP    iron bacteria    microbial corrosion    carbon steel    circulating cooling water
收稿日期: 2022-04-22     
ZTFLH:  TG172  
基金资助:国家自然科学基金(51578035)
作者简介: 许萍,女,1971年生,博士,教授
图1  碳钢试片的平均腐蚀速率
图2  碳钢电极 7 d后的极化曲线图
ConditionEcorr / VIcorr / μA·cm-2βa / mV·dec-1βc / mV·dec-1
Control-0.7913.81864246
IB-0.8314.495104220
HEDP+IB-0.771.936113447
表1  碳钢电极7 d极化曲线拟合结果
图3  碳钢电极7 d时的Nyquist图
图4  模拟电化学阻抗的等效电路
ConditionRs / Ω·cm2Qb / F·cm-2nbRb / Ω·cm2Qf / F·cm-2nfRct / Ω·cm2
Control308.6---------1.8×10-40.81904586
IB258.65.1×10-40.747222374.7×10-30.80222857
HEDP+IB257.43.1×10-40.940532138.6×10-50.98876751
表2  碳钢电极7 d时电化学阻抗拟合结果
图5  不同工况下碳钢界面腐蚀产物SEM像
图6  不同工况下碳钢表面腐蚀产物拟合结果
Condition123456789Average
Control31.5632.6135.6444.2043.2344.8553.7851.7452.4043.33
HEDP15.2517.4218.1619.3721.4521.8824.0325.1425.0120.86
表3  不同测试区域内碳钢表面粘附力
图7  不同工况下铁细菌数量变化
图8  生物膜中EPS、PS、PN变化规律
图9  HEDP对铁细菌腐蚀的影响机理示意图
[1] Liu Z F, Wang Y J, Gao Y H, et al. Synergistic scale inhibition of polyaspartic acid composite with magnetic field [J]. Petroche. Technol., 2006, 35: 891
[1] (刘振法, 王延吉, 高玉华 等. 聚天冬氨酸复配物与磁场的协同阻垢效应 [J]. 石油化工, 2006, 35: 891)
[2] Cui C W, Li S F, Yang H, et al. Study of corrosion inhibitors PBTCA、HEDP and ATMP [J]. Mater. Sci. Eng., 2006, 14: 608
[2] (崔崇威, 李绍峰, 杨红 等. PBTCA、HEDP、ATMP缓蚀性能的理论研究 [J]. 材料科学与工艺, 2006, 14: 608)
[3] Salasi M, Shahrabi T, Roayaei E. Effect of inhibitor concentration and hydrodynamic conditions on the inhibitive behaviour of combinations of sodium silicate and HEDP for corrosion control in carbon steel water transmission pipes [J]. Anti-Corros. Methods Mater., 2007, 54: 82
doi: 10.1108/00035590710733575
[4] Li X Q. Study on performance of organic polyphosphonate and polycarboxylate composite corrosion inhibitor [J]. Shandong Chem. Ind., 2021, 50(7): 42
[4] (李新强. 有机聚膦酸盐和聚羧酸盐复合缓蚀剂性能研究 [J]. 山东化工, 2021, 50(7): 42)
[5] Wang Y T, Chen H L, Zhang Z J, et al. Synthesis and characterization of PBTCA-modified hyperbranched polyether corrosion and scale inhibitors [J]. J. Appl. Polym. Sci., 2019, 136: 48041
doi: 10.1002/app.48041
[6] Farooqi I H, Hussain A, Saini P A, et al. Study of low cost eco-friendly compounds as corrosion inhibitors for cooling systems [J]. Anti-Corros. Methods Mater., 1999, 46: 328
doi: 10.1108/00035599910295508
[7] Rajendran S, Apparao B V, Palaniswamy N. HEDP-Zn2+: a potential inhibitor system for mild steel in low chloride media [J]. Anti-Corros. Methods Mater., 2000, 47: 83
doi: 10.1108/00035590010316430
[8] Wang J, Wang D, Hou D Y. Hydroxyl carboxylate based non-phosphorus corrosion inhibition process for reclaimed water pipeline and downstream recirculating cooling water system [J]. J. Environ. Sci., 2016, 39: 13
doi: 10.1016/j.jes.2015.10.007
[9] Ai S Y. Study and development on organophosphonate corrosion and scale inhibitor [J]. Chem. Cleaning, 1997, 13: 29
[9] (艾仕云. 有机膦酸盐缓蚀阻垢剂的研究和发展 [J]. 化学清洗, 1997, 13: 29)
[10] Qi Y, Li J, Liang R, et al. Chemical additives affect sulfate reducing bacteria biofilm properties adsorbed on stainless steel 316L surface in circulating cooling water system [J]. Front. Environ. Sci. Eng., 2017, 11: 14
[11] Wang K T, Chen F, Li H, et al. Corrosion behavior of L245 pipeline steel in shale gas fracturing produced water containing iron bacteria [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 248
[11] (王坤泰, 陈馥, 李环 等. 铁细菌对L245钢腐蚀行为的影响研究 [J]. 中国腐蚀与防护学报, 2021, 41: 248)
[12] Li Z X, Lv M Y, Du M. Effect of combined potential polarization on corrosion of X65 steel in seawater inoculated with iron oxiding bacteria [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 211
[12] (李振欣, 吕美英, 杜敏. 海水环境中组合电位极化对铁氧化菌腐蚀的影响 [J]. 中国腐蚀与防护学报, 2022, 42: 211)
[13] Teimouri A, Soltani N, Chermahini A N. Synthesis of mono and bis-4-methylpiperidiniummethyl-urea as corrosion inhibitors for steel in acidic media [J]. Front. Chem. Sci. Eng., 2011, 5: 43
doi: 10.1007/s11705-010-0532-7
[14] Awad H S, Turgoose S. Role of complexes in inhibition of mild steel by zinc-1-hydroxyethylidene-1, 1-diphosphonic acid mixtures [J]. Br. Corros. J., 2002, 37: 147
doi: 10.1179/000705902225004347
[15] Awad H S, Turgoose S. Inhibition by zinc and 1-hydroxyethane-1,1-diphosphonic acid of the corrosion of mild steel [J]. Corrosion, 2002, 58: 505
doi: 10.5006/1.3277641
[16] Abrahami S T, De Kok J M M, Terryn H, et al. Towards Cr (VI) -free anodization of aluminum alloys for aerospace adhesive bonding applications: A review [J]. Front. Chem. Sci. Eng., 2017, 11: 465
doi: 10.1007/s11705-017-1641-3
[17] Nasrazadani S, Raman A. Formation and transformation of magnetite (Fe3O4) on steel surfaces under continuous and cyclic water fog testing [J]. Corrosion, 1993, 49: 294
doi: 10.5006/1.3316052
[18] Lovley D R, Stolz J F, Nord G L, et al. Anaerobic production of magnetite by a dissimilatory iron-reducing microorganism [J]. Nature, 1987, 330: 252
doi: 10.1038/330252a0
[19] Golden D C, Dixon J B. Silicate and phosphate influence on kaolin-iron oxide interactions [J]. Soil Sci. Soc. Am. J., 1985, 49: 1568
doi: 10.2136/sssaj1985.03615995004900060047x
[20] Yamashita M, Miyuki H, Matsuda Y, et al. The long term growth of the protective rust layer formed on weathering steel by atmospheric corrosion during a quarter of a century [J]. Corros. Sci., 1994, 36: 283
doi: 10.1016/0010-938X(94)90158-9
[21] Roden E E, Zachara J M. Microbial reduction of crystalline Iron(III) oxides: influence of oxide surface area and potential for cell growth [J]. Environ. Sci. Technol., 1996, 30: 1618
doi: 10.1021/es9506216
[22] Cui Z Y, Ge F, Wang X. Corrosion mechanism of materials in three typical harsh marine atmospheric environments [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 403
[22] (崔中雨, 葛峰, 王昕. 几种苛刻海洋大气环境下的海工材料腐蚀机制 [J]. 中国腐蚀与防护学报, 2022, 42: 403)
[23] Lv M Y, Li Z X, Du M, et al. Effect of culture medium on microbiologically influenced corrosion [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 757
[23] (吕美英, 李振欣, 杜敏 等. 培养基对微生物腐蚀的影响 [J]. 中国腐蚀与防护学报, 2021, 41: 757)
[24] Zhao W, Xia M Z, Lei W, et al. Quantum chemistry studies of organophosphorus corrosion inhibitors [J]. J. Chin. Soc. Corros. Prot., 2002, 22: 26
[24] (赵维, 夏明珠, 雷武 等. 有机磷缓蚀剂分子结构与缓蚀性能的量子化学研究 [J]. 中国腐蚀与防护学报, 2002, 22: 26)
[1] 吴佳佳, 徐鸣, 王鹏, 张盾. 天然海水中硝酸盐的添加对EH40钢腐蚀的影响[J]. 中国腐蚀与防护学报, 2023, 43(4): 765-772.
[2] 邹文杰, 丁立, 张雪姣, 陈均. 环氧树脂/有机硅氧烷改性阳离子丙烯酸乳液复合涂层的研究[J]. 中国腐蚀与防护学报, 2023, 43(4): 922-928.
[3] 郝文魁, 陈新, 徐玲铃, 韩钰, 陈云, 黄路遥, 祝志祥, 杨丙坤, 王晓芳, 张强. 电网碳钢、镀锌钢大气腐蚀等级图绘制研究[J]. 中国腐蚀与防护学报, 2023, 43(4): 795-802.
[4] 王长罡, DANIEL Enobong Felix, 李超, 董俊华, 杨华, 张东玖. 海洋环境中碳钢和不锈钢螺栓紧固件的腐蚀机制差异研究[J]. 中国腐蚀与防护学报, 2023, 43(4): 737-745.
[5] 夏晓健, 万芯媛, 陈云翔, 韩纪层, 陈奕扬, 严康骅, 林德源, 陈天鹏, 左晓梅, 孙宝壮, 程学群. 两种热处理工艺对3Cr钢腐蚀行为影响及机理研究[J]. 中国腐蚀与防护学报, 2023, 43(3): 656-662.
[6] 罗为平, 罗雪, 石悦婷, 王新潮, 张胜涛, 高放, 李红茹. Q235钢表面的超疏水吸附层形成与缓蚀研究[J]. 中国腐蚀与防护学报, 2022, 42(6): 903-912.
[7] 马凯军, 王萌萌, 史振龙, 陈长风, 贾小兰. 温度对原油储罐罐底微生物腐蚀影响规律的研究[J]. 中国腐蚀与防护学报, 2022, 42(6): 1051-1057.
[8] 万晔, 宋芳龄, 李立军. 基于海洋大气环境因素影响下的碳钢腐蚀特征研究[J]. 中国腐蚀与防护学报, 2022, 42(5): 851-855.
[9] 陈佳起, 侯道林, 肖晗, 高雨薇, 董社英. 酸性介质中桂圆壳碳点对碳钢的缓蚀性能研究[J]. 中国腐蚀与防护学报, 2022, 42(4): 629-637.
[10] 李振欣, 吕美英, 杜敏. 海水环境中组合电位极化对铁氧化菌腐蚀的影响[J]. 中国腐蚀与防护学报, 2022, 42(2): 211-217.
[11] 文家新, 张欣, 刘云霞, 周永福, 刘克建. 掺杂pH敏感性智能纳米容器BTA@MSNs-SO3H-PDDA碳钢智能防腐涂层的制备及性能研究[J]. 中国腐蚀与防护学报, 2022, 42(2): 309-316.
[12] 刘珺, 耿永娟, 李绍纯, 徐爱玲, 侯东帅, 刘昂, 郎秀璐, 陈旭, 刘国锋. TEOS/IBTS涂层对海洋潮汐区混凝土微生物污损防护效果研究[J]. 中国腐蚀与防护学报, 2022, 42(1): 135-142.
[13] 王志高, 海潮, 姜杰, 兰新生, 杜翠薇, 李晓刚. Q235钢在德阳大气环境中腐蚀行为研究[J]. 中国腐蚀与防护学报, 2021, 41(6): 871-876.
[14] 何勇君, 张天遂, 王海涛, 张斐, 李广芳, 刘宏芳. 微生物腐蚀杀菌剂研究进展[J]. 中国腐蚀与防护学报, 2021, 41(6): 748-756.
[15] 张斐, 王海涛, 何勇君, 张天遂, 刘宏芳. 成品油输送管道微生物腐蚀案例分析[J]. 中国腐蚀与防护学报, 2021, 41(6): 795-803.