Please wait a minute...
中国腐蚀与防护学报  2024, Vol. 44 Issue (5): 1125-1133     CSTR: 32134.14.1005.4537.2023.341      DOI: 10.11902/1005.4537.2023.341
  综合评述 本期目录 | 过刊浏览 |
临氢环境下管线钢氢损伤机理研究进展
李鑫1, 韦博鑫2, 鲁仰辉1, 孙晨1, 于文涛1, 徐猛1, 刘伟1()
1 国家电投集团科学技术研究院有限公司 北京 102200
2 中国科学院金属研究所 沈阳 110016
Research Progress on Hydrogen Damage Mechanism of Pipeline Steel in Contact with Hydrogen Environment
LI Xin1, WEI Boxin2, LU Yanghui1, SUN Chen1, YU Wentao1, XU Meng1, LIU Wei1()
1 State Power Investment Group Science and Technology Institute Co., Ltd., Beijing 102200, China
2 Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
引用本文:

李鑫, 韦博鑫, 鲁仰辉, 孙晨, 于文涛, 徐猛, 刘伟. 临氢环境下管线钢氢损伤机理研究进展[J]. 中国腐蚀与防护学报, 2024, 44(5): 1125-1133.
Xin LI, Boxin WEI, Yanghui LU, Chen SUN, Wentao YU, Meng XU, Wei LIU. Research Progress on Hydrogen Damage Mechanism of Pipeline Steel in Contact with Hydrogen Environment[J]. Journal of Chinese Society for Corrosion and protection, 2024, 44(5): 1125-1133.

全文: PDF(3981 KB)   HTML
摘要: 

当前全球低碳绿色发展已刻不容缓,氢能作为零碳能源呼声高涨。氢储运环节是产业链中极其重要的一环,而管道输氢最为经济高效,但管线钢处于直接氢气环境中,面临的氢损伤问题再度成为学界热门。文章重点综述了氢分子在钢表面转化为氢原子的吸附渗入过程和氢脆微观机理的最新研究进展;总结了管线钢强度、微观组织、氢陷阱等材料性质和氢气分压、温度、载荷等外部环境因素与氢损伤之间的关系,进一步归纳了预防和抑制管线钢氢脆行为的方法,最后对管线钢氢损伤研究过程中当前面临的难题提出了具体建议。

关键词 氢气管道氢脆机理氢吸附解离氢损伤影响因素    
Abstract

At present, the global low-carbon and green development is urgent, and the voice of hydrogen energy as a zero-carbon energy is rising. Hydrogen storage and transportation is an extremely important part of the hydrogen industrial chain, whilst, among others the pipeline transportation is the most economical and efficient way. However, the pipeline steel is in direct contact with hydrogen, and thus the issue of hydrogen induced damage has become a hot topic again. This review focused on the advancements of how are hydrogen molecules adsorbed and converted into hydrogen atoms on the steel surface and then permeated inwards, as well as the microscopic mechanism of hydrogen embrittlement. The relationships between the hydrogen embrittlement susceptibility with the properties of pipeline steel, such as strength, microstructure, hydrogen traps, and the external environmental factors, such as hydrogen partial pressure, temperature, and load, are summarized. The methods for preventing and inhibiting the hydrogen embrittlement of pipeline steel are further summarized. Finally, specific suggestions are proposed for the current difficulties in the study of hydrogen damage related with pipeline steel.

Key wordshydrogen pipeline    hydrogen embrittlement mechanism    hydrogen adsorption &    dissociation    hydrogen damage    influencing factor
收稿日期: 2023-11-01      32134.14.1005.4537.2023.341
ZTFLH:  TG172  
基金资助:国家重点研发计划(2022YFB4003400)
通讯作者: 刘伟,E-mail:liuwei@spic.com.cn,研究方向为氢能制储输用一体化应用
Corresponding author: LIU Wei, E-mail: liuwei@spic.com.cn
作者简介: 李 鑫,男,1983年生,博士,资深研究员
图1  氢损伤现象
图2  阴极氢在金属基体中渗入扩散示意图[7]
图3  环境中的氢渗入扩散示意图[14]
图4  气态氢原子演化与氢致失效示意图[15]
图5  管线钢中含有的各种捕氢位点[17,18]
图6  典型的氢陷阱与可逆和不可逆陷阱分类[21]
TypeTrapping siteActivation energy / kJ·mol-1
Reversible trapInterstititial sites in iron4-8
Dislocation26.4-26.8
Lath boudary17.8-18.6
Austenite/martensite22
Grain boundary17.8-18.6
NbC(coherent)39-48
Irreversible trapFerrite/cementite interface66.3-68.4
Fe3C84
MnS72
Al2O379
TiC110
表1  部分可逆陷阱和不可逆陷阱的结合能[22]
图7  X52管线钢焊缝不同区域的微观组织差异对比图[70]
1 Shang J, Lu Y H, Zheng J Y, et al. Research status-in-situ and key challenges in pipeline transportation of hydrogen-natural gas mixtures [J]. Chem. Ind. Eng. Prog., 2021, 40: 5499
1 尚 娟, 鲁仰辉, 郑津洋 等. 掺氢天然气管道输送研究进展和挑战 [J]. 化工进展, 2021, 40: 5499
2 Hermesmann M, Müller T E. Green, turquoise, blue, or grey? Environmentally friendly hydrogen production in transforming energy systems [J]. Prog. Energy Combust. Sci., 2022, 90: 100996
3 Liao Q Y, Chen Z G. The safety research on blending hydrogen into natural gas pipeline [J]. Urban Gas, 2021, (4): 19
3 廖倩玉, 陈志光. 天然气管道掺氢输送安全问题研究现状 [J]. 城市燃气, 2021, (4): 19
4 Xie D G, Li M, Shan Z W. Review on hydrogen-microstructure interaction in metals [J]. Mater. China, 2018, 37: 215
4 解德刚, 李 蒙, 单智伟. 氢与金属的微观交互作用研究进展 [J]. 中国材料进展, 2018, 37: 215
5 Rosen M A, Koohi-Fayegh S. The prospects for hydrogen as an energy carrier: an overview of hydrogen energy and hydrogen energy systems[J]. Energ. Ecol. Environ., 2016, 1: 10
6 Cheng Y F. Analysis of electrochemical hydrogen permeation through X-65 pipeline steel and its implications on pipeline stress corrosion cracking [J]. Int. J. Hydrog. Energy, 2007, 32: 1269
7 Cerit M, Kokumer O, Genel K. Stress concentration effects of undercut defect and reinforcement metal in butt welded joint [J]. Eng. Fail. Anal., 2010, 17: 571
8 Trautmann A, Mori G, Oberndorfer M, et al. Hydrogen uptake and embrittlement of carbon steels in various environments [J]. Materials (Basel), 2020, 13: 3604
9 Yu M T, Liu L L, Wang Q, et al. High coverage H2 adsorption and dissociation on fcc Co surfaces from DFT and thermodynamics [J]. Int. J. Hydrog. Energy, 2018, 43: 5576
10 Yoshida K, Somorjai G A. The chemisorption of CO, CO2, C2H2, C2H4, H2 and NH3 on the clean Fe(100) and (111) crystal surfaces [J]. Surf. Sci., 1978, 75: 46
11 Sun Y H, Cheng Y F. Thermodynamics of spontaneous dissociation and dissociative adsorption of hydrogen molecules and hydrogen atom adsorption and absorption on steel under pipelining conditions [J]. Int. J. Hydrog. Energy, 2021, 46: 34469
12 Wang C, Cheng L, Xu Z M, et al. First-principles study on the adsorption of hydrogen atoms and molecules on the surface of manganese alloyed steels [J]. J. Atomic Mol. Phys., 2023, 40(5): 1
12 王 诚, 成 林, 许泽岷 等. 含锰钢表面氢原子/氢分子吸附行为的第一性原理研究 [J]. 原子与分子物理学报, 2023, 40(5): 1
13 Li S Y, Zhao W M, Qiao J H, et al. Competitive adsorption of CO and H2 on strained Fe(110) surface [J]. Acta Phys. Sin., 2019, 68: 217103
13 李守英, 赵卫民, 乔建华 等. CO与H2在应变Fe(110)表面的竞争吸附 [J]. 物理学报, 2019, 68: 217103
14 Aggarwal S, Perusse S R, Tipton C W, et al. Effect of hydrogen on Pb(Zr,Ti)O3-based ferroelectric capacitors [J]. Appl. Phys. Lett., 1998, 73: 1973
15 Michler T, Naumann J. Coatings to reduce hydrogen environment embrittlement of 304 austenitic stainless steel [J]. Surf. Coat. Technol., 2009, 203: 1819
16 Johnson W H. On some remarkable changes produced in iron and steel by the action of hydrogen and acids [J]. Nature, 1875, 11: 393
17 Lynch S. Hydrogen embrittlement phenomena and mechanisms [J]. Corros. Rev., 2012, 30: 105
18 Koyama M, Yamasaki D, Nagashima T, et al. In situ observations of silver-decoration evolution under hydrogen permeation: Effects of grain boundary misorientation on hydrogen flux in pure iron [J]. Scr. Mater., 2017, 129: 48
19 Chen Y S, Lu H Z, Liang J T, et al. Observation of hydrogen trapping at dislocations, grain boundaries, and precipitates [J]. Science, 2020, 367: 171
20 Kim W K, Koh S U, Yang B Y, et al. Effect of environmental and metallurgical factors on hydrogen induced cracking of HSLA steels [J]. Corros. Sci., 2008, 50: 3336
21 Silverstein R, Eliezer D, Tal-Gutelmacher E. Hydrogen trapping in alloys studied by thermal desorption spectrometry [J]. J. Alloy. Compd., 2018, 747: 511
22 Rahman K M M, Qin W, Szpunar J A, et al. New insight into the role of inclusions in hydrogen-induced degradation of fracture toughness: three-dimensional imaging and modeling [J]. Philos. Mag., 2021, 101: 976
23 Tetelman A S, Robertson W D. The mechanism of hydrogen embrittlement observed in iron-silicon single crystals [R]. Yale University, 1961
24 Troiano A R. The role of hydrogen and other interstitials in the mechanical behavior of metals [J]. Metallogr. Microstruct. Anal., 2016, 5: 557
25 Hu S W, Yin Y H, Liang H, et al. A quantification study of hydrogen-induced cohesion reduction at the atomic scale [J]. Mater. Des., 2022, 218: 110702
26 Knott J F. Fracture toughness and hydrogen-assisted crack growth in engineering alloys [A]. ThompsonAW, MoodyNR. Hydrogen Effects in Materials [M]. Wiley, 2013: 385
27 Lynch S P. Progress towards understanding mechanisms of hydrogen embrittlement and stress corrosion cracking [A]. NACE International Corrosion Conference [C]. NACE, 2007
28 Beachem C D. A new model for hydrogen-assisted cracking (hydrogen “embrittlement”) [J]. Metall. Trans., 1972, 3: 441
29 Ferreira P J, Robertson I M, Birnbaum H K. Hydrogen effects on the interaction between dislocations [J]. Acta Mater., 1998, 46: 1749
30 Lu G, Zhang Q, Kioussis N, et al. Hydrogen-enhanced local plasticity in aluminum: an ab initio study [J]. Phys. Rev. Lett., 2001, 87: 095501
31 Wang S, Hashimoto N, Ohnuki S. Hydrogen-induced change in core structures of {110}[111] edge and {110}[111] screw dislocations in iron [J]. Sci. Rep., 2013, 3: 2760
doi: 10.1038/srep02760 pmid: 24067268
32 Nagumo M. Hydrogen related failure of steels-a new aspect [J]. Mater. Sci. Technol., 2004, 20: 940
33 Takai K, Shoda H, Suzuki H, et al. Lattice defects dominating hydrogen-related failure of metals [J]. Acta Mater., 2008, 56: 5158
34 Doshida T, Takai K. Dependence of hydrogen-induced lattice defects and hydrogen embrittlement of cold-drawn pearlitic steels on hydrogen trap state, temperature, strain rate and hydrogen content [J]. Acta Mater., 2014, 79: 93
35 Neeraj T, Srinivasan R, Li J. Hydrogen embrittlement of ferritic steels: Observations on deformation microstructure, nanoscale dimples and failure by nanovoiding [J]. Acta Mater., 2012, 60: 5160
36 Gong P, Nutterp J, Rivera-Diaz-Del-Castillo P E J, et al. Hydrogen embrittlement through the formation of low-energy dislocation nanostructures in nanoprecipitation-strengthened steels [J]. Sci. Adv., 2020, 6: eabb6152
37 Livne T, Chen X, Gerberich W W. Temperature effects on hydrogen assisted crack growth in internally charged AISI 4340 steel [J]. Scr. Metall., 1986, 20: 659
38 Gangloff R P, Wei R P. Gaseous hydrogen embrittlement of high strength steels [J]. Metall. Trans., 1977, 8A: 1043
39 Fritzemeier L C, Chandler W T. Hydrogen embrittlement—rocket engine applications [A]. Superalloys Supercomposites Superceramics [M]. Academic Press, 1989: 491
40 Melaina M W, Antonia O, Penev M. Blending hydrogen into natural gas pipeline networks: a review of key issues [R]. Affiliation: National Renewable Energy Laboratory, 2013: 1
41 Wang Q, Li W H, Wu Y, et al. The effect of X80 steel microstructure on CO inhibition of hydrogen embrittlement [J]. Oil Gas Storage Transp., 2022, 41: 302
41 王 琴, 李文昊, 伍 奕 等. X80钢组织状态对CO抑制氢脆作用的影响 [J]. 油气储运, 2022, 41: 302
42 Latifi V A, Miresmaeili R, Abdollah-Zadeh A. The mutual effects of hydrogen and microstructure on hardness and impact energy of SMA welds in x65 steel [J]. Mater. Sci. Eng., 2017, 679A: 87
43 Davani R K Z, Miresmaeili R, Soltanmohammadi M. Effect of thermomechanical parameters on mechanical properties of base metal and heat affected zone of X65 pipeline steel weld in the presence of hydrogen [J]. Mater. Sci. Eng., 2018, 718A: 135
44 Chan S L I, Charles J A. Effect of carbon content on hydrogen occlusivity and embrittlement of ferrite-pearlite steels [J]. Mater. Sci. Technol., 1986, 2: 956
45 Park G T, Koh S U, Jung H G, et al. Effect of microstructure on the hydrogen trapping efficiency and hydrogen induced cracking of linepipe steel [J]. Corros. Sci., 2008, 50: 1865
46 Chang K D, Gu J L, Fang H S, et al. Effects of heat-treatment process of a novel bainite/martensite dual-phase high strength steel on its susceptibility to hydrogen embrittlement [J]. ISIJ Int., 2001, 41: 1397
47 Shi X B, Yan W, Wang W, et al. Effect of microstructure on hydrogen induced cracking behavior of a high deformability pipeline steel [J]. J. Iron Steel Res. Int., 2015, 22: 937
48 Venezuela J, Zhou Q J, Liu Q L, et al. The influence of microstructure on the hydrogen embrittlement susceptibility of martensitic advanced high strength steels [J]. Mater. Today Commun., 2018, 17: 1
49 Sun Y H, Frank Cheng Y. Hydrogen-induced degradation of high-strength steel pipeline welds: a critical review [J]. Eng. Fail. Anal., 2022, 133: 105985
50 Zhang J M, Zhu Y S, Shao C J, et al. Crystallographic characterization of hydrogen induced cracking in an X65MS acid-resistant pipeline steel [J]. J. Chin. Electr. Microsc. Soc., 2020, 39: 261
50 张继明, 朱延山, 邵春娟 等. X65抗酸管线钢氢致开裂的晶体学表征 [J]. 电子显微学报, 2020, 39: 261
51 Mohtadi-Bonab M A, Szpunar J A, Basu R, et al. The mechanism of failure by hydrogen induced cracking in an acidic environment for API 5L X70 pipeline steel [J]. Int. J. Hydrog. Energy, 2015, 40: 1096
52 Xiao H, Huang F, Peng Z X, et al. Sequential kinetic analysis of the influences of non-metallic inclusions on hydrogen diffusion and trapping in high-strength pipeline steel with Al-Ti deoxidisation and Mg treatment [J]. Corros. Sci., 2022, 195: 110006
53 Huang F, Li X G, Liu J, et al. Effects of alloying elements, microstructure, and inclusions on hydrogen induced cracking of X120 pipeline steel in wet H2S sour environment [J]. Mater. Corros., 2012, 63: 59
54 Haq A J, Muzaka K, Dunne D P, et al. Effect of microstructure and composition on hydrogen permeation in X70 pipeline steels [J]. Int. J. Hydrog. Energy, 2013, 38: 2544
55 Shi X B, Yan W, Wang W, et al. Novel Cu-bearing high-strength pipeline steels with excellent resistance to hydrogen-induced cracking [J]. Mater. Des., 2016, 92: 300
56 Zhang Y P, Shi D M, Chu W Y, et al. Hydrogen-assisted cracking of T-250 maraging steel [J]. Mater. Sci. Eng., 2007, 471A: 34
57 Xing X, Li F Y, Liu J G, et al. Influence of temperature on hydrogen embrittlement of pipeline steel by comprehensive experimental method [J]. Res. Explor. Lab., 2021, 40(5): 36
57 邢 潇, 李凤英, 刘建国 等. 复合实验方法研究温度对管线钢氢脆的影响 [J]. 实验室研究与探索, 2021, 40(5): 36
58 An T, Peng H T, Bai P P, et al. Influence of hydrogen pressure on fatigue properties of X80 pipeline steel [J]. Int. J. Hydrog. Energy, 2017, 42: 15669
59 Moro I, Briottet L, Lemoine P, et al. Hydrogen embrittlement susceptibility of a high strength steel X80 [J]. Mater. Sci. Eng., 2010, 527A: 7252
60 Slifka A J, Drexler E S, Nanninga N E, et al. Fatigue crack growth of two pipeline steels in a pressurized hydrogen environment [J]. Corros. Sci., 2014, 78: 313
61 Li X F, Wang Y F, Zhang P, et al. Effect of pre-strain on hydrogen embrittlement of high strength steels [J]. Mater. Sci. Eng., 2014, 616A: 116
62 Takasugi T, Hanada S. The effect of pre-deformation on moisture-induced embrittlement of Ni3Al alloys [J]. Intermetallics, 1997, 5: 127
63 Kim S J, Kim K Y. Electrochemical hydrogen permeation measurement through high-strength steel under uniaxial tensile stress in plastic range [J]. Scr. Mater., 2012, 66: 1069
64 Nanninga N E, Levy Y S, Drexler E S, et al. Comparison of hydrogen embrittlement in three pipeline steels in high pressure gaseous hydrogen environments [J]. Corros. Sci., 2012, 59: 1
65 Capelle J, Dmytrakh I, Azari Z, et al. Evaluation of electrochemical hydrogen absorption in welded pipe [J]. Procedia Mater. Sci., 2014, 3: 550
66 Lee D, Oda Y, Noguchi H. Observation of small fatigue crack growth behavior in the extremely low growth rate region of low carbon steel in a hydrogen gas environment [J]. Int. J. Fract., 2013, 183: 223
67 Wang L W, Liu Z Y, Cui Z Y, et al. In situ corrosion characterization of simulated weld heat affected zone on API X80 pipeline steel [J]. Corros. Sci., 2014, 85: 401
68 Zhu Z X, Han J, Li H J, et al. High temperature processed high Nb X80 steel with excellent heat-affected zone toughness [J]. Mater. Lett., 2016, 163: 171
69 Khalaj G, Khalaj M J. Investigating the corrosion of the Heat-Affected Zones (HAZs) of API-X70 pipeline steels in aerated carbonate solution by electrochemical methods [J]. Int. J. Pres. Ves. Pip., 2016, 145: 1
70 Ronevich J A, Somerday B P, Feng Z. Hydrogen accelerated fatigue crack growth of friction stir welded X52 steel pipe [J]. Int. J. Hydrog. Energy, 2017, 42: 4259
71 Cheng Y F. Essence and gap analysis for hydrogen embrittlement of pipelines in high-pressure hydrogen environments [J]. Oil Gas Storage Transp., 2023, 42: 1
71 程玉峰. 高压氢气管道氢脆问题明晰 [J]. 油气储运, 2023, 42: 1
72 Staykov A, Komoda R, Kubota M, et al. Coadsorption of CO and H2 on an iron surface and its implication on the hydrogen embrittlement of iron [J]. J. Phys. Chem., 2019, 123C: 30265
73 Komoda R, Kubota M, Staykov A, et al. Inhibitory effect of oxygen on hydrogen-induced fracture of A333 pipe steel [J]. Fatigue Fract. Eng. Mater. Struct., 2019, 42: 1387
[1] 赵璐, 李谦, 赵天亮. 青铜器腐蚀行为与封护技术[J]. 中国腐蚀与防护学报, 2023, 43(6): 1165-1177.
[2] 李海燕, 刘欢, 王阁义, 张秀菊, 陈同舟, 俞云, 姚洪. 锅炉受热面的冲蚀磨损与防护综述[J]. 中国腐蚀与防护学报, 2023, 43(5): 957-970.
[3] 刘明明, 杨小兵, 陈晓琪, 王政彬, 郑玉贵, 贺春林. 醋酸环境下金属材料腐蚀行为的研究进展[J]. 中国腐蚀与防护学报, 2023, 43(1): 13-21.
[4] 滕琳, 陈旭. 海洋环境中金属电偶腐蚀研究进展[J]. 中国腐蚀与防护学报, 2022, 42(4): 531-539.
[5] 王东亮, 丁华平, 马云飞, 龚攀, 王新云. 非晶合金耐蚀性研究进展[J]. 中国腐蚀与防护学报, 2021, 41(3): 277-288.
[6] 李承媛, 陈旭, 何川, 李鸿瑾, 潘鑫. 埋地金属管道交流电腐蚀研究进展[J]. 中国腐蚀与防护学报, 2021, 41(2): 139-150.
[7] 偶国富, 赵露露, 王凯, 王宽心, 金浩哲. 10#碳钢在HCl-H2O环境中的露点腐蚀行为[J]. 中国腐蚀与防护学报, 2018, 38(1): 33-38.
[8] 魏木孟,杨博均,刘洋洋,王孝平,姚敬华,高灵清. Cu-Ni合金管海水冲刷腐蚀研究现状及展望[J]. 中国腐蚀与防护学报, 2016, 36(6): 513-521.
[9] 林翠,赵晓斌,张翼飞. 金属材料的空化腐蚀行为及影响因素研究进展[J]. 中国腐蚀与防护学报, 2016, 36(1): 11-19.
[10] 王海人,江 燕,屈钧娥,李文维,陈凤,张强. 常用金属表面缓蚀自组装膜及其研究方法[J]. 中国腐蚀与防护学报, 2012, 32(4): 273-284.
[11] 蒋秀,屈定荣,刘小辉. 湿气管线的顶部腐蚀研究概况[J]. 中国腐蚀与防护学报, 2011, 31(2): 86-90.
[12] 王春丽,吴建华,李庆芬.  海洋环境电偶腐蚀研究现状与展望[J]. 中国腐蚀与防护学报, 2010, 30(5): 416-420.
[13] 李春福 邓洪达 崔世华.  NT80SS钢在高含H2S/CO2环境中的腐蚀行为[J]. 中国腐蚀与防护学报, 2009, 29(3): 225-229.
[14] 何庆龙; 孟惠民; 王旭东; 俞宏英; 樊自拴; 孙冬柏 . N80油套管钢CO2腐蚀的研究进展[J]. 中国腐蚀与防护学报, 2007, 27(3): 186-192 .
[15] 杜艳霞; 张国忠 . 储罐底板外侧阴极保护电位分布的数值模拟[J]. 中国腐蚀与防护学报, 2006, 26(6): 346-350 .