|
|
临氢环境下管线钢氢损伤机理研究进展 |
李鑫1, 韦博鑫2, 鲁仰辉1, 孙晨1, 于文涛1, 徐猛1, 刘伟1( ) |
1 国家电投集团科学技术研究院有限公司 北京 102200 2 中国科学院金属研究所 沈阳 110016 |
|
Research Progress on Hydrogen Damage Mechanism of Pipeline Steel in Contact with Hydrogen Environment |
LI Xin1, WEI Boxin2, LU Yanghui1, SUN Chen1, YU Wentao1, XU Meng1, LIU Wei1( ) |
1 State Power Investment Group Science and Technology Institute Co., Ltd., Beijing 102200, China 2 Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China |
引用本文:
李鑫, 韦博鑫, 鲁仰辉, 孙晨, 于文涛, 徐猛, 刘伟. 临氢环境下管线钢氢损伤机理研究进展[J]. 中国腐蚀与防护学报, 2024, 44(5): 1125-1133.
Xin LI,
Boxin WEI,
Yanghui LU,
Chen SUN,
Wentao YU,
Meng XU,
Wei LIU.
Research Progress on Hydrogen Damage Mechanism of Pipeline Steel in Contact with Hydrogen Environment[J]. Journal of Chinese Society for Corrosion and protection, 2024, 44(5): 1125-1133.
1 |
Shang J, Lu Y H, Zheng J Y, et al. Research status-in-situ and key challenges in pipeline transportation of hydrogen-natural gas mixtures [J]. Chem. Ind. Eng. Prog., 2021, 40: 5499
|
1 |
尚 娟, 鲁仰辉, 郑津洋 等. 掺氢天然气管道输送研究进展和挑战 [J]. 化工进展, 2021, 40: 5499
|
2 |
Hermesmann M, Müller T E. Green, turquoise, blue, or grey? Environmentally friendly hydrogen production in transforming energy systems [J]. Prog. Energy Combust. Sci., 2022, 90: 100996
|
3 |
Liao Q Y, Chen Z G. The safety research on blending hydrogen into natural gas pipeline [J]. Urban Gas, 2021, (4): 19
|
3 |
廖倩玉, 陈志光. 天然气管道掺氢输送安全问题研究现状 [J]. 城市燃气, 2021, (4): 19
|
4 |
Xie D G, Li M, Shan Z W. Review on hydrogen-microstructure interaction in metals [J]. Mater. China, 2018, 37: 215
|
4 |
解德刚, 李 蒙, 单智伟. 氢与金属的微观交互作用研究进展 [J]. 中国材料进展, 2018, 37: 215
|
5 |
Rosen M A, Koohi-Fayegh S. The prospects for hydrogen as an energy carrier: an overview of hydrogen energy and hydrogen energy systems[J]. Energ. Ecol. Environ., 2016, 1: 10
|
6 |
Cheng Y F. Analysis of electrochemical hydrogen permeation through X-65 pipeline steel and its implications on pipeline stress corrosion cracking [J]. Int. J. Hydrog. Energy, 2007, 32: 1269
|
7 |
Cerit M, Kokumer O, Genel K. Stress concentration effects of undercut defect and reinforcement metal in butt welded joint [J]. Eng. Fail. Anal., 2010, 17: 571
|
8 |
Trautmann A, Mori G, Oberndorfer M, et al. Hydrogen uptake and embrittlement of carbon steels in various environments [J]. Materials (Basel), 2020, 13: 3604
|
9 |
Yu M T, Liu L L, Wang Q, et al. High coverage H2 adsorption and dissociation on fcc Co surfaces from DFT and thermodynamics [J]. Int. J. Hydrog. Energy, 2018, 43: 5576
|
10 |
Yoshida K, Somorjai G A. The chemisorption of CO, CO2, C2H2, C2H4, H2 and NH3 on the clean Fe(100) and (111) crystal surfaces [J]. Surf. Sci., 1978, 75: 46
|
11 |
Sun Y H, Cheng Y F. Thermodynamics of spontaneous dissociation and dissociative adsorption of hydrogen molecules and hydrogen atom adsorption and absorption on steel under pipelining conditions [J]. Int. J. Hydrog. Energy, 2021, 46: 34469
|
12 |
Wang C, Cheng L, Xu Z M, et al. First-principles study on the adsorption of hydrogen atoms and molecules on the surface of manganese alloyed steels [J]. J. Atomic Mol. Phys., 2023, 40(5): 1
|
12 |
王 诚, 成 林, 许泽岷 等. 含锰钢表面氢原子/氢分子吸附行为的第一性原理研究 [J]. 原子与分子物理学报, 2023, 40(5): 1
|
13 |
Li S Y, Zhao W M, Qiao J H, et al. Competitive adsorption of CO and H2 on strained Fe(110) surface [J]. Acta Phys. Sin., 2019, 68: 217103
|
13 |
李守英, 赵卫民, 乔建华 等. CO与H2在应变Fe(110)表面的竞争吸附 [J]. 物理学报, 2019, 68: 217103
|
14 |
Aggarwal S, Perusse S R, Tipton C W, et al. Effect of hydrogen on Pb(Zr,Ti)O3-based ferroelectric capacitors [J]. Appl. Phys. Lett., 1998, 73: 1973
|
15 |
Michler T, Naumann J. Coatings to reduce hydrogen environment embrittlement of 304 austenitic stainless steel [J]. Surf. Coat. Technol., 2009, 203: 1819
|
16 |
Johnson W H. On some remarkable changes produced in iron and steel by the action of hydrogen and acids [J]. Nature, 1875, 11: 393
|
17 |
Lynch S. Hydrogen embrittlement phenomena and mechanisms [J]. Corros. Rev., 2012, 30: 105
|
18 |
Koyama M, Yamasaki D, Nagashima T, et al. In situ observations of silver-decoration evolution under hydrogen permeation: Effects of grain boundary misorientation on hydrogen flux in pure iron [J]. Scr. Mater., 2017, 129: 48
|
19 |
Chen Y S, Lu H Z, Liang J T, et al. Observation of hydrogen trapping at dislocations, grain boundaries, and precipitates [J]. Science, 2020, 367: 171
|
20 |
Kim W K, Koh S U, Yang B Y, et al. Effect of environmental and metallurgical factors on hydrogen induced cracking of HSLA steels [J]. Corros. Sci., 2008, 50: 3336
|
21 |
Silverstein R, Eliezer D, Tal-Gutelmacher E. Hydrogen trapping in alloys studied by thermal desorption spectrometry [J]. J. Alloy. Compd., 2018, 747: 511
|
22 |
Rahman K M M, Qin W, Szpunar J A, et al. New insight into the role of inclusions in hydrogen-induced degradation of fracture toughness: three-dimensional imaging and modeling [J]. Philos. Mag., 2021, 101: 976
|
23 |
Tetelman A S, Robertson W D. The mechanism of hydrogen embrittlement observed in iron-silicon single crystals [R]. Yale University, 1961
|
24 |
Troiano A R. The role of hydrogen and other interstitials in the mechanical behavior of metals [J]. Metallogr. Microstruct. Anal., 2016, 5: 557
|
25 |
Hu S W, Yin Y H, Liang H, et al. A quantification study of hydrogen-induced cohesion reduction at the atomic scale [J]. Mater. Des., 2022, 218: 110702
|
26 |
Knott J F. Fracture toughness and hydrogen-assisted crack growth in engineering alloys [A]. ThompsonAW, MoodyNR. Hydrogen Effects in Materials [M]. Wiley, 2013: 385
|
27 |
Lynch S P. Progress towards understanding mechanisms of hydrogen embrittlement and stress corrosion cracking [A]. NACE International Corrosion Conference [C]. NACE, 2007
|
28 |
Beachem C D. A new model for hydrogen-assisted cracking (hydrogen “embrittlement”) [J]. Metall. Trans., 1972, 3: 441
|
29 |
Ferreira P J, Robertson I M, Birnbaum H K. Hydrogen effects on the interaction between dislocations [J]. Acta Mater., 1998, 46: 1749
|
30 |
Lu G, Zhang Q, Kioussis N, et al. Hydrogen-enhanced local plasticity in aluminum: an ab initio study [J]. Phys. Rev. Lett., 2001, 87: 095501
|
31 |
Wang S, Hashimoto N, Ohnuki S. Hydrogen-induced change in core structures of {110}[111] edge and {110}[111] screw dislocations in iron [J]. Sci. Rep., 2013, 3: 2760
doi: 10.1038/srep02760
pmid: 24067268
|
32 |
Nagumo M. Hydrogen related failure of steels-a new aspect [J]. Mater. Sci. Technol., 2004, 20: 940
|
33 |
Takai K, Shoda H, Suzuki H, et al. Lattice defects dominating hydrogen-related failure of metals [J]. Acta Mater., 2008, 56: 5158
|
34 |
Doshida T, Takai K. Dependence of hydrogen-induced lattice defects and hydrogen embrittlement of cold-drawn pearlitic steels on hydrogen trap state, temperature, strain rate and hydrogen content [J]. Acta Mater., 2014, 79: 93
|
35 |
Neeraj T, Srinivasan R, Li J. Hydrogen embrittlement of ferritic steels: Observations on deformation microstructure, nanoscale dimples and failure by nanovoiding [J]. Acta Mater., 2012, 60: 5160
|
36 |
Gong P, Nutterp J, Rivera-Diaz-Del-Castillo P E J, et al. Hydrogen embrittlement through the formation of low-energy dislocation nanostructures in nanoprecipitation-strengthened steels [J]. Sci. Adv., 2020, 6: eabb6152
|
37 |
Livne T, Chen X, Gerberich W W. Temperature effects on hydrogen assisted crack growth in internally charged AISI 4340 steel [J]. Scr. Metall., 1986, 20: 659
|
38 |
Gangloff R P, Wei R P. Gaseous hydrogen embrittlement of high strength steels [J]. Metall. Trans., 1977, 8A: 1043
|
39 |
Fritzemeier L C, Chandler W T. Hydrogen embrittlement—rocket engine applications [A]. Superalloys Supercomposites Superceramics [M]. Academic Press, 1989: 491
|
40 |
Melaina M W, Antonia O, Penev M. Blending hydrogen into natural gas pipeline networks: a review of key issues [R]. Affiliation: National Renewable Energy Laboratory, 2013: 1
|
41 |
Wang Q, Li W H, Wu Y, et al. The effect of X80 steel microstructure on CO inhibition of hydrogen embrittlement [J]. Oil Gas Storage Transp., 2022, 41: 302
|
41 |
王 琴, 李文昊, 伍 奕 等. X80钢组织状态对CO抑制氢脆作用的影响 [J]. 油气储运, 2022, 41: 302
|
42 |
Latifi V A, Miresmaeili R, Abdollah-Zadeh A. The mutual effects of hydrogen and microstructure on hardness and impact energy of SMA welds in x65 steel [J]. Mater. Sci. Eng., 2017, 679A: 87
|
43 |
Davani R K Z, Miresmaeili R, Soltanmohammadi M. Effect of thermomechanical parameters on mechanical properties of base metal and heat affected zone of X65 pipeline steel weld in the presence of hydrogen [J]. Mater. Sci. Eng., 2018, 718A: 135
|
44 |
Chan S L I, Charles J A. Effect of carbon content on hydrogen occlusivity and embrittlement of ferrite-pearlite steels [J]. Mater. Sci. Technol., 1986, 2: 956
|
45 |
Park G T, Koh S U, Jung H G, et al. Effect of microstructure on the hydrogen trapping efficiency and hydrogen induced cracking of linepipe steel [J]. Corros. Sci., 2008, 50: 1865
|
46 |
Chang K D, Gu J L, Fang H S, et al. Effects of heat-treatment process of a novel bainite/martensite dual-phase high strength steel on its susceptibility to hydrogen embrittlement [J]. ISIJ Int., 2001, 41: 1397
|
47 |
Shi X B, Yan W, Wang W, et al. Effect of microstructure on hydrogen induced cracking behavior of a high deformability pipeline steel [J]. J. Iron Steel Res. Int., 2015, 22: 937
|
48 |
Venezuela J, Zhou Q J, Liu Q L, et al. The influence of microstructure on the hydrogen embrittlement susceptibility of martensitic advanced high strength steels [J]. Mater. Today Commun., 2018, 17: 1
|
49 |
Sun Y H, Frank Cheng Y. Hydrogen-induced degradation of high-strength steel pipeline welds: a critical review [J]. Eng. Fail. Anal., 2022, 133: 105985
|
50 |
Zhang J M, Zhu Y S, Shao C J, et al. Crystallographic characterization of hydrogen induced cracking in an X65MS acid-resistant pipeline steel [J]. J. Chin. Electr. Microsc. Soc., 2020, 39: 261
|
50 |
张继明, 朱延山, 邵春娟 等. X65抗酸管线钢氢致开裂的晶体学表征 [J]. 电子显微学报, 2020, 39: 261
|
51 |
Mohtadi-Bonab M A, Szpunar J A, Basu R, et al. The mechanism of failure by hydrogen induced cracking in an acidic environment for API 5L X70 pipeline steel [J]. Int. J. Hydrog. Energy, 2015, 40: 1096
|
52 |
Xiao H, Huang F, Peng Z X, et al. Sequential kinetic analysis of the influences of non-metallic inclusions on hydrogen diffusion and trapping in high-strength pipeline steel with Al-Ti deoxidisation and Mg treatment [J]. Corros. Sci., 2022, 195: 110006
|
53 |
Huang F, Li X G, Liu J, et al. Effects of alloying elements, microstructure, and inclusions on hydrogen induced cracking of X120 pipeline steel in wet H2S sour environment [J]. Mater. Corros., 2012, 63: 59
|
54 |
Haq A J, Muzaka K, Dunne D P, et al. Effect of microstructure and composition on hydrogen permeation in X70 pipeline steels [J]. Int. J. Hydrog. Energy, 2013, 38: 2544
|
55 |
Shi X B, Yan W, Wang W, et al. Novel Cu-bearing high-strength pipeline steels with excellent resistance to hydrogen-induced cracking [J]. Mater. Des., 2016, 92: 300
|
56 |
Zhang Y P, Shi D M, Chu W Y, et al. Hydrogen-assisted cracking of T-250 maraging steel [J]. Mater. Sci. Eng., 2007, 471A: 34
|
57 |
Xing X, Li F Y, Liu J G, et al. Influence of temperature on hydrogen embrittlement of pipeline steel by comprehensive experimental method [J]. Res. Explor. Lab., 2021, 40(5): 36
|
57 |
邢 潇, 李凤英, 刘建国 等. 复合实验方法研究温度对管线钢氢脆的影响 [J]. 实验室研究与探索, 2021, 40(5): 36
|
58 |
An T, Peng H T, Bai P P, et al. Influence of hydrogen pressure on fatigue properties of X80 pipeline steel [J]. Int. J. Hydrog. Energy, 2017, 42: 15669
|
59 |
Moro I, Briottet L, Lemoine P, et al. Hydrogen embrittlement susceptibility of a high strength steel X80 [J]. Mater. Sci. Eng., 2010, 527A: 7252
|
60 |
Slifka A J, Drexler E S, Nanninga N E, et al. Fatigue crack growth of two pipeline steels in a pressurized hydrogen environment [J]. Corros. Sci., 2014, 78: 313
|
61 |
Li X F, Wang Y F, Zhang P, et al. Effect of pre-strain on hydrogen embrittlement of high strength steels [J]. Mater. Sci. Eng., 2014, 616A: 116
|
62 |
Takasugi T, Hanada S. The effect of pre-deformation on moisture-induced embrittlement of Ni3Al alloys [J]. Intermetallics, 1997, 5: 127
|
63 |
Kim S J, Kim K Y. Electrochemical hydrogen permeation measurement through high-strength steel under uniaxial tensile stress in plastic range [J]. Scr. Mater., 2012, 66: 1069
|
64 |
Nanninga N E, Levy Y S, Drexler E S, et al. Comparison of hydrogen embrittlement in three pipeline steels in high pressure gaseous hydrogen environments [J]. Corros. Sci., 2012, 59: 1
|
65 |
Capelle J, Dmytrakh I, Azari Z, et al. Evaluation of electrochemical hydrogen absorption in welded pipe [J]. Procedia Mater. Sci., 2014, 3: 550
|
66 |
Lee D, Oda Y, Noguchi H. Observation of small fatigue crack growth behavior in the extremely low growth rate region of low carbon steel in a hydrogen gas environment [J]. Int. J. Fract., 2013, 183: 223
|
67 |
Wang L W, Liu Z Y, Cui Z Y, et al. In situ corrosion characterization of simulated weld heat affected zone on API X80 pipeline steel [J]. Corros. Sci., 2014, 85: 401
|
68 |
Zhu Z X, Han J, Li H J, et al. High temperature processed high Nb X80 steel with excellent heat-affected zone toughness [J]. Mater. Lett., 2016, 163: 171
|
69 |
Khalaj G, Khalaj M J. Investigating the corrosion of the Heat-Affected Zones (HAZs) of API-X70 pipeline steels in aerated carbonate solution by electrochemical methods [J]. Int. J. Pres. Ves. Pip., 2016, 145: 1
|
70 |
Ronevich J A, Somerday B P, Feng Z. Hydrogen accelerated fatigue crack growth of friction stir welded X52 steel pipe [J]. Int. J. Hydrog. Energy, 2017, 42: 4259
|
71 |
Cheng Y F. Essence and gap analysis for hydrogen embrittlement of pipelines in high-pressure hydrogen environments [J]. Oil Gas Storage Transp., 2023, 42: 1
|
71 |
程玉峰. 高压氢气管道氢脆问题明晰 [J]. 油气储运, 2023, 42: 1
|
72 |
Staykov A, Komoda R, Kubota M, et al. Coadsorption of CO and H2 on an iron surface and its implication on the hydrogen embrittlement of iron [J]. J. Phys. Chem., 2019, 123C: 30265
|
73 |
Komoda R, Kubota M, Staykov A, et al. Inhibitory effect of oxygen on hydrogen-induced fracture of A333 pipe steel [J]. Fatigue Fract. Eng. Mater. Struct., 2019, 42: 1387
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|