Please wait a minute...
中国腐蚀与防护学报  2022, Vol. 42 Issue (2): 211-217    DOI: 10.11902/1005.4537.2021.106
  研究报告 本期目录 | 过刊浏览 |
海水环境中组合电位极化对铁氧化菌腐蚀的影响
李振欣, 吕美英, 杜敏()
中国海洋大学化学化工学院 海洋化学理论与工程技术教育部重点实验室 青岛 266100
Effect of Combined Potential Polarization on Corrosion of X65 Steel in Seawater Inoculated with Iron Oxiding Bacteria
LI Zhenxin, LV Meiying, DU Min()
Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
全文: PDF(9692 KB)   HTML
摘要: 

采用电化学测试、扫描电镜、激光共聚焦显微镜、Raman光谱等手段研究了-850 mV (vs. SCE,下同) 转-1050 mV和-1050 mV转-850 mV组合电位阴极极化对X65钢在含铁氧化菌 (IOB) 的海水中腐蚀的影响。结果表明:两种组合电位极化都对IOB腐蚀有一定抑制作用;极化与开路电位下X65钢腐蚀产物种类差别不大,含量有区别。-1050 mV极化可以抑制IOB附着但不能完全去除已形成的生物膜,这是-1050 mV转-850 mV极化保护效果优于-850 mV转-1050 mV极化的原因。

关键词 微生物腐蚀铁氧化菌组合电位阴极极化海水环境附着    
Abstract

The effect of stepwise cathodic polarizations with two potentials: either -850 mV (vs. SCE) then -1050 mV or -1050 mV then -850 mV on the corrosion behavior of X65 steel in the aged Qingdao seawater inoculated with iron oxidizing bacteria was studied by means of electrochemical techniques, scanning electron microscopy and confocal laser scanning microscopy and Raman spectroscopy. The results show that both of the two stepwise polarizations all can inhibit the IOB induced corrosion. There is little difference in the composition but variation in the content of each constituent of corrosion products formed on X65 steel in the aged Qingdao seawater inoculated with iron oxidizing bacteria by open circuit potential as well as by applying either of the two stepwise polarizations respectively. The polarization by -1050 mV can inhibit IOB adhesion, but cannot completely remove the formed biofilm, which may be the reason why the stepwise polarization by -1050 mV then -850 mV has better protection effect than that by -850 mV then -1050 mV.

Key wordsmicrobiologically influenced corrosion    iron-oxidizing bacteria    combined potential cathodic polarization    seawater environment    adhering
收稿日期: 2021-05-12     
ZTFLH:  Q939.98  
基金资助:国家自然科学基金(51871204)
通讯作者: 杜敏     E-mail: ssdm99@ouc.edu.cn
Corresponding author: DU Min     E-mail: ssdm99@ouc.edu.cn
作者简介: 李振欣,男,1995年生,硕士生

引用本文:

李振欣, 吕美英, 杜敏. 海水环境中组合电位极化对铁氧化菌腐蚀的影响[J]. 中国腐蚀与防护学报, 2022, 42(2): 211-217.
Zhenxin LI, Meiying LV, Min DU. Effect of Combined Potential Polarization on Corrosion of X65 Steel in Seawater Inoculated with Iron Oxiding Bacteria. Journal of Chinese Society for Corrosion and protection, 2022, 42(2): 211-217.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2021.106      或      https://www.jcscp.org/CN/Y2022/V42/I2/211

图1  海水环境中铁氧化菌的生长曲线
图2  不同阴极电位下3 d时溶液中IOB数量
图3  不同组合电位下浸泡7 d后X65钢表面形貌图
图4  不同阴极电位下极化7 d后去除试样表面腐蚀产物后基底形貌
ConditionNpit / 1/mm2davg / μmdmax / μmDavg / μm
OCP45.25-1.56-12.8524.92
-850 to -1050 mV27.50-1.47-8.8221.07
-1050 to -850 mV11.75-1.48-4.7720.47
表1  X65钢在不同阴极电位下极化7 d后去除腐蚀产物的激光共聚焦显微镜测量数据
图5  不同阴极电位下极化7 d后X65钢表面Raman谱图
图6  不同阴极电位下极化不同时间后X65钢的电化学阻抗图
图7  电化学阻抗谱拟合等效电路图
图8  电化学阻抗谱拟合参数随时间变化曲线
图9  不同阴极电位下X65钢表面状态图
1 Xu Z. Study on constitutive relation and failure criteria of X65 pipeline steel [J]. Petro. Eng. Constr., 2014, 40(3): 23
1 徐震. X65管线钢的本构关系及失效判据研究 [J]. 石油工程建设, 2014, 40(3): 23
2 Shi X B, Yang C G, Yan W, et al. Microbiologically influenced corrosion of pipeline steels [J]. J. Chin. Soc. Corros. Prot., 2019, 39: 9
2 史显波, 杨春光, 严伟等. 管线钢的微生物腐蚀 [J]. 中国腐蚀与防护学报, 2019, 39: 9
3 McBeth J M, Little B J, Ray R I, et al. Neutrophilic iron-oxidizing “Zetaproteobacteria” and mild steel corrosion in nearshore marine environments [J]. Appl. Environ. Microbiol., 2011, 77: 1405
4 McBeth J M, Emerson D. In situ microbial community succession on mild steel in estuarine and marine environments: Exploring the role of iron-oxidizing bacteria [J]. Front. Microbiol., 2016, 7: 767
5 Liu H W, Fu C Y, Gu T Y, et al. Corrosion behavior of carbon steel in the presence of sulfate reducing bacteria and iron oxidizing bacteria cultured in oilfield produced water [J]. Corros. Sci., 2015, 100: 484
6 Zhang H Y, Tian Y M, Wan J M, et al. Study of biofilm influenced corrosion on cast iron pipes in reclaimed water [J]. Appl. Surf. Sci., 2015, 357: 236
7 Lv M Y, Du M, Li X, et al. Mechanism of microbiologically influenced corrosion of X65 steel in seawater containing sulfate-reducing bacteria and iron-oxidizing bacteria [J]. J. Mater. Res. Technol., 2019, 8: 4066
8 Emerson D, Moyer C. Isolation and characterization of novel iron-oxidizing bacteria that grow at circumneutral pH [J]. Appl. Environ. Microbiol., 1997, 63: 4784
9 Sung W, Morgan J J. Kinetics and product of ferrous iron oxygenation in aqueous systems [J]. Environ. Sci. Technol., 1980, 14: 561
10 Sobolev D, Roden E E. Characterization of a neutrophilic, chemolithoautotrophic Fe(II)-oxidizing β-proteobacterium from freshwater wetland sediments [J]. Geomicrobiol. J., 2004, 21: 1
11 Starosvetsky D, Armon R, Yahalom J, et al. Pitting corrosion of carbon steel caused by iron bacteria [J]. Int. Biodeterior. Biodegrad., 2011, 47: 79
12 Starosvetsky J, Starosvetsky D, Pokroy B, et al. Electrochemical behaviour of stainless steels in media containing iron-oxidizing bacteria (IOB) by corrosion process modeling [J]. Corros. Sci., 2008, 50: 540
13 Moradi M, Duan J, Ashassi-Sorkhabi H, et al. De-alloying of 316 stainless steel in the presence of a mixture of metal-oxidizing bacteria [J]. Corros. Sci., 2011, 53: 4282
14 Miot J, Benzerara K, Morin G, et al. Iron biomineralization by anaerobic neutrophilic iron-oxidizing bacteria [J]. Geochim. Cosmochim. Acta, 2009, 73: 696
15 Yue Y Y, Lv M Y, Du M. The corrosion behavior and mechanism of X65 steel induced by iron-oxidizing bacteria in the seawater environment [J]. Mater. Corros., 2019, 70: 1852
16 Wang H, Ju L K, Castaneda H, et al. Corrosion of carbon steel C1010 in the presence of iron oxidizing bacteria Acidithiobacillus ferrooxidans [J]. Corros. Sci., 2014, 89: 250
17 Wang K T, Chen F, Li H, et al. Corrosion behavior of L245 pipeline steel in shale gas fracturing produced water containing iron bacteria [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 248
17 王坤泰, 陈馥, 李环等. 铁细菌对L245钢腐蚀行为的影响研究 [J]. 中国腐蚀与防护学报, 2021, 41: 248
18 Lv Y L, Liu H W, Xiong F P, et al. Corrosion behavior of X80 pipeline steel in oil-field produced water containing iron oxidizing bacteria [J]. Corros. Sci. Prot. Technol., 2017, 29: 343
18 吕亚林, 刘宏伟, 熊福平等. 铁氧化菌对X80管线钢腐蚀行为的影响 [J]. 腐蚀科学与防护技术, 2017, 29: 343
19 Esquivel R G, Olivares G Z, Gayosso M J H, et al. Cathodic protection of XL 52 steel under the influence of sulfate reducing bacteria [J]. Mater. Corros., 2011, 62: 61
20 Guan F, Zhai X F, Duan J Z, et al. Influence of sulfate-reducing bacteria on the corrosion behavior of high strength steel EQ70 under cathodic polarization [J]. PLoS One, 2016, 11: e0162315
21 Sun C, Xu J, Wang F H, et al. Effects of SRB on cathodic protection of Q235 steel in soils [J]. Mater. Corros., 2010, 61: 762
22 Permeh S, Lau K, Tansel B, et al. Surface conditions for microcosm development and proliferation of SRB on steel with cathodic corrosion protection [J]. Constr. Build. Mater., 2020, 243: 118209
23 Lv M Y, Yue Y Y, Li Z X, et al. Effect of cathodic polarization on corrosion behavior of X65 steel in seawater containing iron-oxidizing bacteria [J]. Int. J. Electrochem. Sci., 2021, 16: 1
24 Det Norske Veritas. DNV-RP-B401 [R]. Cathodic Protection Design, 2005
25 Liu H W, Liu H F. Research progress of corrosion of steels induced by iron oxidizing bacteria [J]. J. Chin. Soc. Corros. Prot., 2017, 37: 195
25 刘宏伟, 刘宏芳. 铁氧化菌引起的钢铁材料腐蚀研究进展 [J]. 中国腐蚀与防护学报, 2017, 37: 195
26 Refait P, Jeannin M, Sabot R, et al. Electrochemical formation and transformation of corrosion products on carbon steel under cathodic protection in seawater [J]. Corros. Sci., 2013, 71: 32
27 Gunasekaran G, Chongdar S, Gaonkar S N, et al. Influence of bacteria on film formation inhibiting corrosion [J]. Corros. Sci., 2004, 46: 1953
28 Niu Y, Lin Z L, Lin G J, et al. Research on corrosion behavior of Q235 steel in marine iron-oxidizing bacteria [J]. Mar. Environ. Sci., 2014, 33: 739
28 牛艳, 林振龙, 林国基等. Q235钢在海洋铁细菌作用下的腐蚀行为研究 [J]. 海洋环境科学, 2014, 33: 739
29 Li X B, Wang J. Effect of cathodic polarization on microbial film in seawater environment [J]. Equip. Environ. Eng., 2004, 1(6): 27
29 李相波, 王佳. 阴极极化对金属电极表面微生物膜的影响 [J]. 装备环境工程, 2004, 1(6): 27
30 Dargahi M, Hosseinidoust Z, Tufenkji N, et al. Investigating electrochemical removal of bacterial biofilms from stainless steel substrates [J]. Colloid. Surf., 2014, 117B: 152
[1] 刘珺, 耿永娟, 李绍纯, 徐爱玲, 侯东帅, 刘昂, 郎秀璐, 陈旭, 刘国锋. TEOS/IBTS涂层对海洋潮汐区混凝土微生物污损防护效果研究[J]. 中国腐蚀与防护学报, 2022, 42(1): 135-142.
[2] 何勇君, 张天遂, 王海涛, 张斐, 李广芳, 刘宏芳. 微生物腐蚀杀菌剂研究进展[J]. 中国腐蚀与防护学报, 2021, 41(6): 748-756.
[3] 吕美英, 李振欣, 杜敏, 万紫轩. 培养基对微生物腐蚀的影响[J]. 中国腐蚀与防护学报, 2021, 41(6): 757-764.
[4] 张斐, 王海涛, 何勇君, 张天遂, 刘宏芳. 成品油输送管道微生物腐蚀案例分析[J]. 中国腐蚀与防护学报, 2021, 41(6): 795-803.
[5] 李光泉, 李广芳, 王俊强, 张天遂, 张斐, 蒋习民, 刘宏芳. 临海管道微生物腐蚀损伤机制与防护[J]. 中国腐蚀与防护学报, 2021, 41(4): 429-438.
[6] 马刚, 顾艳红, 赵杰. 硫酸盐还原菌对钢材腐蚀行为的研究进展[J]. 中国腐蚀与防护学报, 2021, 41(3): 289-297.
[7] 何静, 杨纯田, 李中. 建筑行业微生物腐蚀与防护研究进展[J]. 中国腐蚀与防护学报, 2021, 41(2): 151-160.
[8] 王坤泰, 陈馥, 李环, 罗米娜, 贺杰, 廖子涵. 铁细菌对L245钢腐蚀行为的影响研究[J]. 中国腐蚀与防护学报, 2021, 41(2): 248-254.
[9] 张雨轩, 陈翠颖, 刘宏伟, 李伟华. 铝合金霉菌腐蚀研究进展[J]. 中国腐蚀与防护学报, 2021, 41(1): 13-21.
[10] 董续成, 管方, 徐利婷, 段继周, 侯保荣. 海洋环境硫酸盐还原菌对金属材料腐蚀机理的研究进展[J]. 中国腐蚀与防护学报, 2021, 41(1): 1-12.
[11] 王欣彤, 陈旭, 韩镇泽, 李承媛, 王岐山. 硫酸盐还原菌作用下2205双相不锈钢在3.5%NaCl溶液中应力腐蚀开裂行为研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 43-50.
[12] 王玉, 吴佳佳, 张盾. 海水环境中异化铁还原菌所致金属材料腐蚀的研究进展[J]. 中国腐蚀与防护学报, 2020, 40(5): 389-397.
[13] 胥聪敏,罗立辉,王文渊,赵苗苗,田永强,宋鹏迪. D-tyrosine对碳钢表面铁细菌生物膜的杀菌增强作用机理研究[J]. 中国腐蚀与防护学报, 2020, 40(1): 63-69.
[14] 卫晓阳,杨丽景,吕战鹏,郑必长,宋振纶. 磁场对纯Cu微生物腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2019, 39(6): 484-494.
[15] 吴堂清,周昭芬,王鑫铭,张德闯,尹付成,孙成. 微生物致裂的热力学和动力学分析[J]. 中国腐蚀与防护学报, 2019, 39(3): 227-234.