Please wait a minute...
中国腐蚀与防护学报  2025, Vol. 45 Issue (2): 338-346     CSTR: 32134.14.1005.4537.2024.274      DOI: 10.11902/1005.4537.2024.274
  临氢关键材料服役行为研究专刊 本期目录 | 过刊浏览 |
预充氢对Ni-Cr合金在高温高压水中腐蚀行为影响
白钲清, 农靖, 韦世宸, 徐健()
中山大学材料学院 深圳 518107
Effect of Pre-charging Hydrogen on Corrosion Behavior of Ni-Cr Alloy in High Temperature and High Pressure Water
BAI Zhengqing, NONG Jing, WEI Shichen, XU Jian()
School of Materials, Sun Yat-Sen University, Shenzhen 518107, China
引用本文:

白钲清, 农靖, 韦世宸, 徐健. 预充氢对Ni-Cr合金在高温高压水中腐蚀行为影响[J]. 中国腐蚀与防护学报, 2025, 45(2): 338-346.
Zhengqing BAI, Jing NONG, Shichen WEI, Jian XU. Effect of Pre-charging Hydrogen on Corrosion Behavior of Ni-Cr Alloy in High Temperature and High Pressure Water[J]. Journal of Chinese Society for Corrosion and protection, 2025, 45(2): 338-346.

全文: PDF(21678 KB)   HTML
摘要: 

采用扫描电镜、Raman光谱仪和透射电子显微镜分析了4种Cr含量的Ni-Cr合金在290 ℃/9 MPa高温高压水环境中浸泡720 h后其表面氧化膜的微观形貌及成分。结果表明:有无预充氢试样表面均形成了不同结构的富Cr氧化膜,相比于未预充氢试样,预充氢后试样不论外层还是内层腐蚀产物厚度都显著增加,表明预充氢可以显著加速材料在高温水中的氧化速率;随着试样中Cr含量增加,无预充氢材料表面会形成更致密的富Cr氧化层保护基体,但在预充氢影响下随着Cr含量增加,材料内层中出现显著孔洞,降低了氧化膜的保护性。

关键词 Ni-Cr合金高温高压水腐蚀产物预充氢    
Abstract

Four model Ni-Cr alloys with varying chromium content were pre-charged with hydrogen. Then their oxidation behavior was assessed in a high-temperature, high-pressure water (290 oC/9 MPa) for 720 h via scanning electron microscopy (SEM), Raman spectroscopy, and transmission electron microscopy (TEM). The results revealed that Cr-rich oxide scales of different structures were formed on both the hydrogen-charged and uncharged alloys. Notably, the thickness of oxide scales on the hydrogen charged alloys increased significantly compared to that on the uncharged ones, indicating that pre-hydrogen charging could accelerate the oxidation rate of the alloy in high-temperature high-pressure water. Moreover, as the Cr content increased, a denser Cr-rich oxide scale could form for the uncharged alloys, enhancing its protectiveness. However, under the influence of hydrogen pre-charging, selective dissolution of Ni-containing oxides occurred in the inner portion, leading to substantial voids beneath oxide scale and diminishing the protective capability of the oxidation scale.

Key wordsNi-Cr alloy    high temperature high pressure water    corrosion product    pre-hydrogen charging
收稿日期: 2024-08-28      32134.14.1005.4537.2024.274
ZTFLH:  TG174  
基金资助:深圳市高等学校稳定资助面上项目(2022A007);国家自然科学基金(52001336)
通讯作者: 徐健,E-mail:xujian3@mail.sysu.edu.cn,研究方向为核电材料腐蚀与防护
Corresponding author: XU Jian, E-mail: xujian3@mail.sysu.edu.cn
作者简介: 白钲清,男,1999年生,硕士生
SampleCrSPCMnWMoNi
10Cr10.190.280.0250.020.010.010.01Bal.
15Cr15.160.090.0310.010.0130.0480.01Bal.
20Cr20.100.340.0240.010.0620.0530.01Bal.
30Cr29.450.180.0250.020.010.0980.01Bal.
表1  实验用Ni-Cr合金化学成分 (mass fraction / %)
图1  高温高压动态腐蚀实验装置
图2  未预充氢条件下4种Ni-Cr模型合金在高温高压无氧水中浸泡720 h后表面SEM形貌
图3  预充氢条件下4种Ni-Cr合金在高温高压无氧水中浸泡720 h后表面SEM形貌
图4  有无预充氢的4种Ni-Cr合金在高温高压无氧水中浸泡720 h后表面Raman光谱扫描
图5  有无预充氢的4种Ni-Cr合金在高温高压无氧水中浸泡720 h后腐蚀产物截面SEM形貌
图6  4种Ni-Cr合金试样的腐蚀产物截面形貌TEM形貌(HAADF模式)
图7  30Cr-N腐蚀产物截面TEM分析
图8  30Cr-H腐蚀产物截面TEM分析
1 Kim J, Choi K J, Bahn C B, et al. In situ Raman spectroscopic analysis of surface oxide films on Ni-base alloy/low alloy steel dissimilar metal weld interfaces in high-temperature water [J]. J. Nucl. Mater., 2014, 449: 181
2 de Araújo Figueiredo C, Bosch R W, Vankeerberghen M. Electrochemical investigation of oxide films formed on nickel alloys 182, 600 and 52 in high temperature water [J]. Electrochim. Acta, 2011, 56: 7871
3 Kim T, Choi K J, Yoo S C, et al. Effects of dissolved hydrogen on the crack-initiation and oxidation behavior of nickel-based alloys in high-temperature water [J]. Corros. Sci., 2016, 106: 260
4 Marchetti L, Martin F, Datcharry F, et al. Kinetics of hydrogen permeation through a Ni-base alloy membrane exposed to primary medium of pressurized water reactors [J]. Corros. Sci., 2018, 144: 1
5 Qiao L J, Luo J L. Hydrogen-facilitated anodic dissolution of austenitic stainless steels [J]. Corrosion, 1998, 54: 281
6 Dan T C, Shoji T, Lu Z P, et al. Effects of hydrogen on the anodic behavior of Alloy 690 at 60 oC [J]. Corros. Sci., 2010, 52: 1228
7 Das N K, Shoji T. Early stage oxidation of Ni-Cr binary alloy (1 1 1), (1 1 0) and (1 0 0) surfaces: a combined density functional and quantum chemical molecular dynamics study [J]. Corros. Sci., 2013, 73: 18
8 Das N K, Shoji T. Early stage oxidation initiation at different grain boundaries of FCC Fe-Cr binary alloy: a computational chemistry study [J]. Oxid. Met., 2013, 79: 429
9 Das N K, Tirtom I, Shoji T. A multiscale modelling study of Ni-Cr crack tip initial stage oxidation at different stress intensities [J]. Mater. Chem. Phys., 2010, 122: 336
10 Das N K, Shoji T, Takeda Y. A fundamental study of Fe-Cr binary alloy-oxide film interfaces at 288 ℃ by computational chemistry calculations [J]. Corros. Sci., 2010, 52: 2349
11 Hou J, Peng Q J, Sakaguchi K, et al. Effect of hydrogen in Inconel Alloy 600 on corrosion in high temperature oxygenated water [J]. Corros. Sci., 2010, 52: 1098
12 Peng Q J, Hou J, Sakaguchi K, et al. Effect of dissolved hydrogen on corrosion of Inconel Alloy 600 in high temperature hydrogenated water [J]. Electrochim. Acta, 2011, 56: 8375
13 Wang Z H, Lozano-Perez S, Watanabe Y, et al. Impact of diffusible hydrogen on corrosion of Alloy 600 at 288 oC: an in-situ electrochemical study [J]. Corros. Sci., 2024, 234: 112150
14 Wang Z H, Takeda Y. Mechanistic understanding of the roles of hydrogen in modification of oxide film of alloy 600 in high temperature high pressure water environment [J]. Corros. Sci., 2020, 170: 108656
15 Wang Z H, Takeda Y. Amorphization and structural modification of the oxide film of Ni-based alloy by in-situ H charging in high temperature high pressure water environment [J]. Corros. Sci., 2020, 166: 108474
16 Wang Z H, Takeda Y. Roles of permeated hydrogen in the oxidation process of Ni-based alloy in high temperature water environment [J]. Corros. Sci., 2021, 179: 109139
17 Zhang Y L, Ren Y Q, Guo Q, et al. Experiments and DFT calculations on the effects of interstitial hydrogen on Ti corrosion products in high temperature water [J]. Corros. Sci., 2024, 232: 112014
18 Xu J, Nong J, Liang F R, et al. Hydrogen charging effects on the alternation of oxide film formed on Ni, Cr and Alloy 690 in high-temperature water [J]. Corros. Sci., 2022, 209: 110704
19 Guo Q, Nong J, Wu Y L, et al. Effects of in-situ hydrogen charging on the oxide film of iron in high-temperature water: experiments and DFT calculations [J]. Scr. Mater., 2022, 221: 114990
20 Xu J, Wang Z H, Shoji T. Effects of hydrogen on corrosion of pure Ni in high temperature water [J]. Corros. Sci., 2017, 122: 123
21 Xu J, Shoji T. The corrosion behavior of Alloy 182 in a cyclic hydrogenated and oxygenated water chemistry in high temperature aqueous environment [J]. Corros. Sci., 2016, 104: 248
22 Xu J, Shoji T, Jang C. The effects of dissolved hydrogen on the corrosion behavior of Alloy 182 in simulated primary water [J]. Corros. Sci., 2015, 97: 115
23 Xu J, Shoji T. The corrosion behavior of Alloy 52 weld metal in cyclic hydrogenated and oxygenated water chemistry in high temperature aqueous environment [J]. J. Nucl. Mater., 2015, 461: 10
24 Luo L L, Su M, Yan P F, et al. Atomic origins of water-vapour-promoted alloy oxidation [J]. Nat. Mater., 2018, 17: 514
doi: 10.1038/s41563-018-0078-5 pmid: 29736001
25 Das N K, Suzuki K, Takeda Y, et al. Quantum chemical molecular dynamics study of stress corrosion cracking behavior for fcc Fe and Fe-Cr surfaces [J]. Corros. Sci., 2008, 50: 1701
26 Ziemniak S E, Guilmette P A, Turcotte R A, et al. Oxidative dissolution of nickel metal in hydrogenated hydrothermal solutions [J]. Corros. Sci., 2008, 50: 449
[1] 杨震宇, 基超, 郭丽雅, 徐闰, 彭伟, 赵洪山, 韦习成, 董瀚. 6种典型商用纯铁和钢材在3.5%NaCl溶液中的初期腐蚀行为[J]. 中国腐蚀与防护学报, 2025, 45(2): 469-478.
[2] 赵连红, 王英芹, 刘元海, 何卫平, 王浩伟. 四种飞机起落架用钢在模拟海水中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2024, 44(5): 1263-1273.
[3] 杜广, 芦国强, 邓龙辉, 蒋佳宁, 曹学强. 铝含量对镍铝合金在稀硫酸溶液中的腐蚀行为影响[J]. 中国腐蚀与防护学报, 2024, 44(4): 1011-1021.
[4] 吴洋, 安易强, 王力伟, 崔中雨. 镁铝合金在模拟低温条件下大气腐蚀行为研究[J]. 中国腐蚀与防护学报, 2024, 44(4): 1001-1010.
[5] 张运军, 蒋有伟, 张忠义, 吕乃欣, 陈君伟, 连国锋. 3Cr合金钢在尿素辅助稠油蒸汽吞吐环境中的初期腐蚀行为[J]. 中国腐蚀与防护学报, 2024, 44(2): 480-488.
[6] 冷文俊, 石西召, 辛永磊, 杨延格, 王利, 崔中雨, 侯健. 极地低温海洋大气环境下Ni-Cr-Mo-V钢腐蚀行为与室内外相关性研究[J]. 中国腐蚀与防护学报, 2024, 44(1): 91-99.
[7] 白雪寒, 丁康康, 张彭辉, 范林, 张慧霞, 刘少通. AH36船用钢海水加速腐蚀试验研究[J]. 中国腐蚀与防护学报, 2024, 44(1): 187-196.
[8] 王晓, 李明, 刘峰, 王忠平, 李相波, 李宁旺. 温度对B10铜镍合金管冲刷腐蚀行为影响规律研究[J]. 中国腐蚀与防护学报, 2023, 43(6): 1329-1338.
[9] 李强, 路程, 唐颖浩, 唐建峰, 刘炳成. 湿气管道积液区X70CO2 局部腐蚀行为研究[J]. 中国腐蚀与防护学报, 2023, 43(4): 837-846.
[10] 幸雪松, 范白涛, 朱新宇, 张俊莹, 陈长风. 低H2S和高CO2分压下超深井用P110SS油套管钢腐蚀特征研究[J]. 中国腐蚀与防护学报, 2023, 43(3): 611-618.
[11] 周志平, 吴大康, 张宏福, 张磊, 李明星, 张志鑫, 钟显康. 高温下L80钢的断裂机理及CO2/H2S模拟工况下的腐蚀行为[J]. 中国腐蚀与防护学报, 2023, 43(3): 601-610.
[12] 王晓, 刘峰, 李焰, 张威, 李相波. 静态和动态海水中B10铜镍合金管的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2023, 43(1): 119-126.
[13] 李晗, 刘元海, 赵连红, 崔中雨. 300M超高强度钢在模拟海洋环境中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2023, 43(1): 87-94.
[14] 王小红, 李子硕, 唐御峰, 谭浩, 蒋焰罡. CO2-H2S-Cl-共存的地层水环境中Cr含量对钢的腐蚀产物膜特性的影响[J]. 中国腐蚀与防护学报, 2022, 42(6): 1043-1050.
[15] 薛芳, 刘两雨, 谭龙. Q235钢在不同浓度碳酸氢钠溶液中的有氧腐蚀行为[J]. 中国腐蚀与防护学报, 2022, 42(5): 771-778.