Please wait a minute...
中国腐蚀与防护学报  2022, Vol. 42 Issue (6): 1051-1057          DOI: 10.11902/1005.4537.2021.273
  研究报告 本期目录 | 过刊浏览 |
温度对原油储罐罐底微生物腐蚀影响规律的研究
马凯军1, 王萌萌1, 史振龙1, 陈长风2(), 贾小兰2
1.国家管网集团东部储运公司 徐州 221008
2.中国石油大学 (北京) 新能源与材料学院 北京 102249
Influence of Temperature on Microbial Induced Corrosion of Tank Bottom for Crude Oil Storage
MA Kaijun1, WANG Mengmeng1, SHI Zhenlong1, CHEN Changfeng2(), JIA Xiaolan2
1. Eastern Oil Storage and Transportation Co. Ltd., Pipe China Network Corporation, Xuzhou 221008, China
2. School of New Energy and Materials, China University of Petroleum (Beijing), Beijing 102249, China
引用本文:

马凯军, 王萌萌, 史振龙, 陈长风, 贾小兰. 温度对原油储罐罐底微生物腐蚀影响规律的研究[J]. 中国腐蚀与防护学报, 2022, 42(6): 1051-1057.
Kaijun MA, Mengmeng WANG, Zhenlong SHI, Changfeng CHEN, Xiaolan JIA. Influence of Temperature on Microbial Induced Corrosion of Tank Bottom for Crude Oil Storage[J]. Journal of Chinese Society for Corrosion and protection, 2022, 42(6): 1051-1057.

全文: PDF(8908 KB)   HTML
摘要: 

为探究温度对原油储罐罐底微生物腐蚀 (均匀腐蚀和局部腐蚀) 的影响规律与机理,采用16S rRNA基因测序分析微生物种群的特征,利用扫描电镜、激光共聚焦显微镜观察微生物膜的形态和点蚀坑特征。结果表明,罐底水微生物含有嗜温和嗜热的硫酸盐还原菌 (SRB) 和腐生菌 (TGB),均匀腐蚀速率在65 ℃达到峰值,整体属于轻微腐蚀;点蚀速率在35 ℃达到峰值,达到0.8 mm/a,温度低于25 ℃及超过85 ℃后点蚀速率明显降低。温度对罐底板钢微生物腐蚀的影响与微生物种类耐温性有关,30~70 ℃间是点蚀敏感温度区间,点蚀坑与菌落的团簇生长有关,微生物首先在金属表面形成团簇状的菌落,然后代谢过程中菌落下的金属发生了快速腐蚀。

关键词 罐底板腐蚀微生物腐蚀点蚀坑硫酸盐还原菌腐生菌耐温性    
Abstract

The influence of temperature on the microbial induced corrosion (uniform corrosion rate and local corrosion rate) of the tank bottom for crude oil storage was assessed by means of 16S rRNA gene sequencing, as well as scanning electron microscope and laser confocal microscope in terms of the characteristics of microbial populations, and the morphology of the microbial film, and the characteristics of pitting. The results showed that the water microorganisms on the tank bottom composed of mesophilic and thermophilic sulfate-reducing bacteria (SRB), and saprophytic bacteria (TGB). The uniform corrosion rate of the Q235A steel plate reached a peak at 65 ℃, however, the overall corrosion rate was slight. The pitting corrosion rate peaked at 35 ℃, reaching 0.8 mm/a, and the pitting corrosion rate decreased significantly at temperatures below 25 ℃ and over 85 ℃. The influence of temperature on the microbial induced corrosion of the Q235A steel plate of tank floor is related to the temperature tolerance of microbial species. The temperature range between 30 and 70 ℃ is the sensitive temperature range of pitting corrosion. The emerge of corrosion pits are related to the growth of colony clusters, while microbes first form clusters on the metal surface. Therefore,during the process of metabolism, the metal beneath the colonies was rapidly corroded.

Key wordstank bottom corrosion    microbial corrosion    pitting    sulfate reducing bacteria    saprophytic bacteria    temperature resistance
收稿日期: 2021-10-09     
ZTFLH:  TG174  
作者简介: 马凯军,男, 1983年生,硕士,高级工程师
图1  罐底板微生物腐蚀形貌
图2  罐底水微生物的丰度16S rRNA基因测序分析
PhylumGenusContent / %Nature
ThermotogaeMesotoga3.08G+Anaerobic or facultative, thermophilic bacteria, metabolize sugar, protein, oxidize sulfate
ProteobacteriaDesulfovibrio3.12G- Anaerobic, non-spore, mesophilic bacteria, oxidized sulfide
Desulfobacter0.57
BacteroidetesMacellibacteroides6.38G+Anaerobic, no spores, metabolize sugar to produce acid, mesophilic bacteria
Proteiniphilum6.7G-Anaerobic, non-spore, metabolizing organic product propionic acid, mesophilic bacteria
FirmicutesBacillus11.64G+Aerobic or anaerobic, with spores, metabolizing sugar to produce acid, mesophilic bacteria
Sporotomaculum0.9G+Anaerobic Spore Metabolism of Benzoate Lipids Methanogenic, Mesophilic Bacteria
Gracilibacter0.19G-Anaerobic, non-spore, metabolizing organic matter, thermophilic bacteria
Hydrogenoanaerobacterium0.6G+Anaerobic, hydrogen or methane production, mesophilic bacteria
Ruminococcus0.33G+Anaerobic, metabolizing cellulose, acid producing, spherical, mesophilic bacteria
Tyzzerella4.7G+Anaerobic, acid-producing, mesophilic bacteria
Clostridium16.18G+Anaerobic, metabolize glycoprotein, produce acid or alcohol, thermophilic bacteria
Tepidimicrobium0.36G+Anaerobic, sporulation, metabolizing organic matter, utilization of sulfide, thermophilic bacteria
Proteiniclasticum7.67G-Anaerobic, non-spore, metabolizing protein, acid producing, mesophilic bacteria
Terrisporobacter25.07G+Anaerobic, spore-forming, spherical, metabolizing sugar, acid-producing, mesophilic bacteria
Sedimentibacter7.1G+Anaerobic, spore production, amino acid metabolism, acid production, mesophilic bacteria
表1  罐底水微生物丰度与特性
图3  温度对罐底板微生物腐蚀影响规律
图4  罐底板微生物腐蚀后的表面形貌
图5  35 ℃下腐蚀以后点蚀坑内部形貌
图6  不同温度腐蚀后最大点蚀坑轮廓形貌
[1] Liu S, Wang J, Cheng H H, et al. Corrosion mechanism and protective measures of inner wall baseplate of large crude oil storage tank [J]. Surf. Technol., 2017, 46(11): 47
[1] (刘栓, 王娟, 程红红 等. 大型原油储罐内壁底板腐蚀机理及防护措施 [J]. 表面技术, 2017, 46(11): 47)
[2] Javaherdashti R. Microbiologically influenced corrosion (MIC) [A]. Microbiologically Influenced Corrosion: An Engineering Insight [M]. Cham: Springer, 2017: 31
[3] Shi X B, Yang C G, Yan W, et al. Microbiologically influenced corrosion of pipeline steels [J]. J. Chin. Soc. Corros. Prot., 2019, 39: 9
[3] (史显波, 杨春光, 严伟 等. 管线钢的微生物腐蚀 [J]. 中国腐蚀与防护学报, 2019, 39: 9)
[4] Zhang F, Wang H T, He Y J, et al. Case analysis of microbial corrosion in product oil pipeline [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 795
[4] (张斐, 王海涛, 何勇君 等. 成品油输送管道微生物腐蚀案例分析 [J]. 中国腐蚀与防护学报, 2021, 41: 795)
[5] Shi J Y, Tao G F, Lu Y Q, et al. Study on the microbiological corrosion behavior of X65 pipeline steel by SRB and IB [J]. Oil Gas Field Surf. Eng., 2021, 40(8): 12
[5] (史晶莹, 陶桂凤, 卢永强 等. SRB和IB对X65管线钢的微生物腐蚀行为研究 [J]. 油气田地面工程, 2021, 40(8): 12)
[6] Ma G, Gu Y H, Zhao J. Research progress on sulfate-reducing bacteria induced corrosion of steels [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 289
[6] (马刚, 顾艳红, 赵杰. 硫酸盐还原菌对钢材腐蚀行为的研究进展 [J]. 中国腐蚀与防护学报, 2021, 41: 289)
[7] Zhang R Y, Zhao G A, Shi D Y, et al. Experimental study on microbiologically influenced corrosion of natural gas gathering pipelines [J]. Mater. Prot., 2019, 52(11): 38
[7] (张仁勇, 赵国安, 施岱艳 等. 天然气集输管道的微生物腐蚀试验研究 [J]. 材料保护, 2019, 52(11): 38)
[8] Jiang X, Fan J Z, Qu D R, et al. Corrosion failure analysis on an underground pipeline for a gas gathering station [J]. Corros. Sci. Prot. Technol., 2019, 31: 320
[8] (蒋秀, 范举忠, 屈定荣 等. 某集气站埋地管道腐蚀失效原因分析 [J]. 腐蚀科学与防护技术, 2019, 31: 320)
[9] Wang K T, Chen F, Li H, et al. Corrosion behavior of L245 pipeline steel in shale gas fracturing produced water containing iron Bacteria [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 248
[9] (王坤泰, 陈馥, 李环 等. 铁细菌对L245钢腐蚀行为的影响研究 [J]. 中国腐蚀与防护学报, 2021, 41: 248)
[10] Chen X Y, Zhao Q H, Guo P. Discussion on the causes of gas field corrosion and anti-corrosion measures [J]. Total Corros. Control, 2020, 34(9): 95
[10] (陈晓宇, 赵启宏, 郭朴. 关于气田腐蚀原因及防腐措施探究 [J]. 全面腐蚀控制, 2020, 34(9): 95)
[11] Xu D, Li Y, Gu T. A synergistic D-tyrosine and tetrakis hydroxy‐methyl phosphonium sulfate biocide combination for the mitigation of an SRB biofilm [J]. World J. Microbiol. Biotechnol., 2012, 28: 3067
doi: 10.1007/s11274-012-1116-0
[12] Cord-Ruwisch R, Widdel F. Corroding iron as a hydrogen source for sulphate reduction in growing cultures of sulphate-reducing bacteria [J]. Appl. Microbiol. Biotechnol., 1986, 25: 169
doi: 10.1007/BF00938942
[13] Matias P M, Pereira I A C, Soares C M, et al. Sulphate respiration from hydrogen in Desulfovibrio bacteria: a structural biology overview [J]. Prog. Biophys. Mol. Biol., 2005, 89: 292
doi: 10.1016/j.pbiomolbio.2004.11.003
[14] Antony P J, Raman R K S, Mohanram R, et al. Influence of thermal aging on sulfate-reducing bacteria (SRB)-influenced corrosion behaviour of 2205 duplex stainless steel [J]. Corros. Sci., 2008, 50: 1858
doi: 10.1016/j.corsci.2008.03.009
[15] Hardy J A, Bown J L. The corrosion of mild steel by biogenic sulfide films exposed to air [J]. Corrosion, 1984, 40: 650
doi: 10.5006/1.3593903
[16] Duan J Z, Wu S R, Zhang X J, et al. Corrosion of carbon steel influenced by anaerobic biofilm in natural seawater [J]. Electrochim. Acta, 2008, 54: 22
doi: 10.1016/j.electacta.2008.04.085
[17] Li H B, Xu D K, Li Y C, et al. Extracellular electron transfer is a bottleneck in the microbiologically influenced corrosion of C1018 carbon steel by the biofilm of sulfate-reducing bacterium Desulfovibrio vulgaris [J]. PLoS One, 2015, 10(8): e0136183
doi: 10.1371/journal.pone.0136183
[18] Sherar B W A, Power I M, Keech P G, et al. Characterizing the effect of carbon steel exposure in sulfide containing solutions to microbially induced corrosion [J]. Corros. Sci., 2011, 53: 955
doi: 10.1016/j.corsci.2010.11.027
[19] Fadhlaoui K, Ben Hania W, Armougom F, et al. Obligate sugar oxidation in Mesotoga spp., phylum Thermotogae, in the presence of either elemental sulfur or hydrogenotrophic sulfate‐reducers as electron acceptor [J]. Environ. Microbiol., 2018, 20: 281
doi: 10.1111/1462-2920.13995 pmid: 29124868
[20] Whitman W B. Bergey's Manual of Systematics of Archaea and Bacteria [M]. Hoboken, New Jersey: Wiley, 2015: 1
[21] Du C, Webb C. Cellular systems [A]. Murray M Y. Comprehensive Biotechnology [M]. 2nd ed. Burlington, VT: Academic Press, 2011: 11
[22] Muyzer G, Stams A J M. The ecology and biotechnology of sulphate-reducing bacteria [J]. Nat. Rev. Microbiol., 2008, 6: 441
doi: 10.1038/nrmicro1892
[23] Isaksen M F, Jorgensen B B. Adaptation of psychrophilic and psychrotrophic sulfate-reducing bacteria to permanently cold marine environments [J]. Appl. Environ. Microbiol., 1996, 62: 408
doi: 10.1128/aem.62.2.408-414.1996
[24] Knoblauch C, Jørgensen B B, Harder J. Community size and metabolic rates of psychrophilic sulfate-reducing bacteria in arctic marine sediments [J]. Appl. Environ. Microbiol., 1999, 65: 4230
doi: 10.1128/AEM.65.9.4230-4233.1999
[25] Li J Y, Huang W B, Wang X L, et al. Research on screening and physiological characteristics of sulfate reducing bacteria [J]. Anhui Agric. Sci., 2010, 38: 16092
[25] (李俊叶, 黄伟波, 王筱兰 等. 硫酸盐还原菌的筛选及生理特性研究 [J]. 安徽农业科学, 2010, 38: 16092)
[26] Henry E A, Devereux R, Maki J S, et al. Characterization of a new thermophilic sulfate-reducing bacterium [J]. Arch. Microbiol., 1994, 161: 62
pmid: 11541228
[27] Chen M Y. The growth and the sulfur metabolisms of thermophilic sulfate-reducing bacteria at different temperatures [J]. Guangdong Chem. Ind., 2016, 43(3): 31
[27] (陈鸣渊. 嗜热硫酸盐还原菌在不同温度下的生长及其硫代谢 [J]. 广东化工, 2016, 43(3): 31)
[28] Liu H F, Liu T. Growth characteristics of thermophile sulfate-reducing bacteria and its effect on carbon steel [J]. J. Chin. Soc. Corros. Prot., 2009, 29(2): 93
[28] (刘宏芳, 刘涛. 嗜热硫酸盐还原菌生长特征及其对碳钢腐蚀的影响 [J]. 中国腐蚀与防护学报, 2009, 29(2): 93)
[29] Liu T, Liu H, Hu Y, et al. Growth characteristics of thermophile sulfate-reducing bacteria and its effect on carbon steel [J]. Mater. Corros., 2009, 60: 218
doi: 10.1002/maco.200805063
[30] Lin J, Zhu G W, Sun C, et al. A review of microbiologically influenced corrosion of metals [J]. Corros. Sci. Prot. Technol., 2001, 13(5): 279
[30] (林建, 朱国文, 孙成 等. 金属的微生物腐蚀 [J]. 腐蚀科学与防护技术, 2001, 13(5): 279)
[31] Gu T Y, Zhao K L, Nesic S. A new mechanistic model for mic based on a biocatalytic cathodic sulfate reduction theory [A]. Corrosion 2009 [C]. Atlanta, Georgia, 2009
[1] 高秋英, 曾文广, 王恒, 刘元聪, 扈俊颖. 流体冲刷作用对SRB的腐蚀行为影响研究[J]. 中国腐蚀与防护学报, 2023, 43(5): 1087-1093.
[2] 吴佳佳, 徐鸣, 王鹏, 张盾. 天然海水中硝酸盐的添加对EH40钢腐蚀的影响[J]. 中国腐蚀与防护学报, 2023, 43(4): 765-772.
[3] 许萍, 赵美惠, 白鹏凯. 循环冷却水中HEDP对铁细菌腐蚀影响及机理研究[J]. 中国腐蚀与防护学报, 2022, 42(6): 988-994.
[4] 李振欣, 吕美英, 杜敏. 海水环境中组合电位极化对铁氧化菌腐蚀的影响[J]. 中国腐蚀与防护学报, 2022, 42(2): 211-217.
[5] 朱海林, 陆小猛, 李晓芬, 王俊霞, 刘建华, 冯丽, 马雪梅, 胡志勇. 含噻二唑季铵盐表面活性剂的合成及缓蚀杀菌性能研究[J]. 中国腐蚀与防护学报, 2022, 42(1): 51-59.
[6] 刘珺, 耿永娟, 李绍纯, 徐爱玲, 侯东帅, 刘昂, 郎秀璐, 陈旭, 刘国锋. TEOS/IBTS涂层对海洋潮汐区混凝土微生物污损防护效果研究[J]. 中国腐蚀与防护学报, 2022, 42(1): 135-142.
[7] 何勇君, 张天遂, 王海涛, 张斐, 李广芳, 刘宏芳. 微生物腐蚀杀菌剂研究进展[J]. 中国腐蚀与防护学报, 2021, 41(6): 748-756.
[8] 张斐, 王海涛, 何勇君, 张天遂, 刘宏芳. 成品油输送管道微生物腐蚀案例分析[J]. 中国腐蚀与防护学报, 2021, 41(6): 795-803.
[9] 吕美英, 李振欣, 杜敏, 万紫轩. 培养基对微生物腐蚀的影响[J]. 中国腐蚀与防护学报, 2021, 41(6): 757-764.
[10] 李光泉, 李广芳, 王俊强, 张天遂, 张斐, 蒋习民, 刘宏芳. 临海管道微生物腐蚀损伤机制与防护[J]. 中国腐蚀与防护学报, 2021, 41(4): 429-438.
[11] 马刚, 顾艳红, 赵杰. 硫酸盐还原菌对钢材腐蚀行为的研究进展[J]. 中国腐蚀与防护学报, 2021, 41(3): 289-297.
[12] 何静, 杨纯田, 李中. 建筑行业微生物腐蚀与防护研究进展[J]. 中国腐蚀与防护学报, 2021, 41(2): 151-160.
[13] 王坤泰, 陈馥, 李环, 罗米娜, 贺杰, 廖子涵. 铁细菌对L245钢腐蚀行为的影响研究[J]. 中国腐蚀与防护学报, 2021, 41(2): 248-254.
[14] 董续成, 管方, 徐利婷, 段继周, 侯保荣. 海洋环境硫酸盐还原菌对金属材料腐蚀机理的研究进展[J]. 中国腐蚀与防护学报, 2021, 41(1): 1-12.
[15] 张雨轩, 陈翠颖, 刘宏伟, 李伟华. 铝合金霉菌腐蚀研究进展[J]. 中国腐蚀与防护学报, 2021, 41(1): 13-21.