Please wait a minute...
中国腐蚀与防护学报  2024, Vol. 44 Issue (5): 1089-1099     CSTR: 32134.14.1005.4537.2023.361      DOI: 10.11902/1005.4537.2023.361
  综合评述 本期目录 | 过刊浏览 |
中性水系锌离子电池负极缓蚀剂研究进展
吴浩天, 张天遂, 李广芳, 刘宏芳()
华中科技大学 能源转换与储存材料化学教育部重点实验室 材料化学与服役失效湖北省重点实验室 化学与化工学院 武汉 430074
Corrosion Inhibitor for Zn Anode of Neutral Aqueous Zinc Ion Batteries
WU Haotian, ZHANG Tiansui, LI Guangfang, LIU Hongfang()
Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
引用本文:

吴浩天, 张天遂, 李广芳, 刘宏芳. 中性水系锌离子电池负极缓蚀剂研究进展[J]. 中国腐蚀与防护学报, 2024, 44(5): 1089-1099.
Haotian WU, Tiansui ZHANG, Guangfang LI, Hongfang LIU. Corrosion Inhibitor for Zn Anode of Neutral Aqueous Zinc Ion Batteries[J]. Journal of Chinese Society for Corrosion and protection, 2024, 44(5): 1089-1099.

全文: PDF(6866 KB)   HTML
摘要: 

围绕锌负极在中性电解质中腐蚀产生枝晶、钝化、析氢等关键问题,综述了锌负极缓蚀剂防护方法的研究进展,旨在从溶剂化结构调控、静电屏蔽、吸附作用、原位固态电解质界面4种防护机理,揭示不同类型缓蚀剂的性能、稳定性及实际应用的可行性,进而为锌负极保护提供依据,展望缓蚀剂防护方法未来的发展方向。

关键词 锌离子电池金属锌负极腐蚀缓蚀剂    
Abstract

Aqueous Zn-ion batteries are considered as possible substitutes for Li-ion batteries because of their low cost, high safety and environment-friendly. However, the hydrogen evolution side reaction, passivation and dendrite of Zn anode in neutral water electrolyte seriously affect the stability and safety of the battery and hinder its application. Zn anode is the key part that affects the capacity, stability and cycle life of battery. Introduction of corrosion inhibitor into electrolyte is a simple and practical method to inhibit the corrosion of Zn electrode. In this review, the mechanisms related with dendrite formation, passivation and hydrogen evolution reaction of Zn anode in neutral electrolyte are introduced first, and then the countermeasures of using corrosion inhibitor to solve these three problems are summarized. The performance, stability and feasibility of practical application of various corrosion inhibitors for the protection of Zn anode are illustrated in terms of perspectives such as the adjustment of solvation structure, electrostatic shield, adsorption, and in-situ solid electrolyte interface etc. Finally, the future development direction of corrosion inhibitor-based protection method for Zn anode is also proposed.

Key wordszinc ion battery    zinc anode    corrosion    inhibitor
收稿日期: 2023-11-16      32134.14.1005.4537.2023.361
ZTFLH:  TQ152  
基金资助:国家自然科学基金(52171069)
通讯作者: 刘宏芳,E-mail:liuhf@hust.edu.cn,研究方向为材料物理与化学、腐蚀与防护、纳米功能材料及应用
Corresponding author: LIU Hongfang, E-mail: liuhf@hust.edu.cn
作者简介: 第一联系人:吴浩文,男,1999年生,硕士生
图1  Zn2+溶剂化过程示意图以及电极与电解质界面间的相互作用[10]
图2  恒电流下Zn沉积过程的连续TEM图像以及4 s时的TEM图像放大后的六边形锌晶面[19]
图3  Zn沉积溶解过程的连续TEM图像[19]
MechanismSubstanceWay of working
Solvation structure

High concentration electrolytes, alcohol, carbohydrate, organic solvents,

complexing agent

Change the solvation structure by replacing water in original solvation structure or form hydrogen bonds

with H2O

Self-healing electrostatic

shield

Metal ion, quaternary ammonium salt

Cations adsorb at electrode surface, preventing

Zn2+ from depositing at the tip to inhibiting

dendrite growth

Adsorption

Polymers, aldehydes, carbohydrate,

surfactant

Optimize the electric field of electrode surface and

adjust the electrical double layer

Artificial solid electrolyte interphaseMetal ion and oxide, phosphorous salts, polymer monomersGeneral a in situ protective layer to prevent the direct contact between electrode and electrolyte
表1  缓蚀剂种类及其作用机理
图4  分子动力学模拟Zn2+在1 mol/L Zn(TFSI)2添加不同LiTFSI浓度(5, 10, 20 mol/L)电解质中的溶剂化结构[21]
Corrosion inhibitorElectrolytesCurrent density, capacity and cycle timeRef.
dimethyl sulfoxideZnSO4

1 mA·cm-2, 1 mAh·cm-2, 2100 h

3 mA·cm-2, 3 mAh·cm-2, 200 h

[22]
N-methyl-2-pyrrolidoneZnSO41 mA·cm-2, 1 mAh·cm-2, 540 h[29]
ethylene glycolZnSO4

0.5 mA·cm-2, 0.5 mAh·cm-2, 1300 h

5 mA·cm-2, 0.5 mAh·cm-2, 800 h

[24]
triethylmethyl ammoniumZnCl2

1 mA·cm-2, 0.5 mAh·cm-2, 2145 h

5 mA·cm-2, 2.5 mAh·cm-2, 500 h

[40]
melamineZnSO42 mA·cm-2, 2 mAh·cm-2, 3000 h[42]
monosodium glutamateZnSO4

2 mA·cm-2, 2 mAh·cm-2, 2200 h

5 mA·cm-2, 5 mAh·cm-2, 1700 h

[43]
glycineZnSO4

1 mA·cm-2, 0.5 mAh·cm-2, 2000 h

4 mA·cm-2, 2 mAh·cm-2, 600 h

[44]
histidineZnSO42 mA·cm-2, 1 mAh·cm-2, 4180 h[45]
L-cysteineZnSO41 mA·cm-2, 0.5 mAh·cm-2, 2500 h[46]
SeO2ZnSO42 mA·cm-2, 2 mAh·cm-2, 2100 h[55]
sucroseZnSO4

1 mA·cm-2, 1 mAh·cm-2, 2000 h

2 mA·cm-2, 2 mAh·cm-2, 500 h

[57]
sorbitolZnSO41 mA·cm-2, 0.5 mAh·cm-2, 2000 h[60]
alkyl polyglucosideZnSO41 mA·cm-2, 0.25 mAh·cm-2, 4000 h[61]
silk peptideZnSO41 mA·cm-2, 1 mAh·cm-2, 3000 h[64]
polyaspartic acidZnSO40.5 mA cm-2, 0.5 mAh·cm-2, 3200 h[65]
ovalbuminZnSO41 mA·cm-2, 1 mAh·cm-2, 2200 h[71]
γ-valerolactoneZnSO41 mA·cm-2, 1 mAh·cm-2, 3500 h[72]
AgNO3ZnSO40.5 mA·cm-2, 0.25 mAh·cm-2, 1800 h[73]
KIZnSO41 mA·cm-2, 1 mAh·cm-2, 3000 h[74]
Ni2+ZnSO41 mA·cm-2, 1 mAh·cm-2, 900 h[75]
cholinium cationsZnSO41 mA·cm-2, 1 mAh·cm-2, 2000 h[76]
dioxaneZnSO41 mA·cm-2, 1 mAh·cm-2, 2000 h[77]
sodium tartrateZnSO40.5 mA·cm-2, 0.25 mAh·cm-2, 1500 h[78]
tetramethylureaZn(OTf)21 mA·cm-2, 1 mAh·cm-2, 3000 h[79]
thioureaZnSO41 mA·cm-2, 1 mAh·cm-2, 1200 h[80]
tetrahydrofuranZnSO4

0.5 mA·cm-2, 0.5 mAh·cm-2, 1300 h

1 mA·cm-2, 1 mAh·cm-2, 500 h

[81]
phytic acidZnSO41 mA·cm-2, 1 mAh·cm-2, 1200 h[82]
penta-potassium triphosphateZnSO41 mA·cm-2, 1 mAh·cm-2, 3800 h[83]
1-hydroxy ethylidene-1,1-diphosphonic acidZnSO41 mA·cm-2, 1 mAh·cm-2, 1500 h[84]
taurineZnSO41 mA·cm-2, 1 mAh·cm-2, 3000 h[85]
tetrabutylammonium 4-toluenesulfonateZn(PS)21 mA·cm-2, 1 mAh·cm-2, 2000 h[86]
1-phenylethylamine hydrochlorideZnSO41 mA·cm-2, 1 mAh·cm-2, 2082 h[87]
succinimideZnSO420 mA·cm-2, 10 mAh·cm-2, 680 h[88]
hexamethylenetetramineZnSO45 mA·cm-2, 1 mAh·cm-2, 4000 h[89]
1-ethyl-3-methylimidazolium chlorideZnSO41 mA·cm-2, 1 mAh·cm-2, 500 h[90]
1-butyl-3-methylimidazolium cationZnSO4

2 mA·cm-2, 1 mAh·cm-2, 3162 h

5 mA·cm-2, 5 mAh·cm-2, 1410 h

10 mA·cm-2, 10 mAh·cm-2, 1000 h

[91]
L-ascorbic acid sodiumZnSO41 mA·cm-2, 1 mAh·cm-2, 1200 h[92]
表2  不同缓蚀剂的Zn||Zn对称电池循环性能统计对比表
1 Pei Y W, Zhang H, Wang X H. Recent advances in the electrolytes of rechargeable zinc-ion batteries [J]. Energy Storage Sci. Technol., 2022, 11: 2075
1 裴英伟, 张 红, 王星辉. 可充电锌离子电池电解质的研究进展 [J]. 储能科学与技术, 2022, 11: 2075
doi: 10.19799/j.cnki.2095-4239.2022.0040
2 Shen Q B, Chen T Q. Progress of electrolyte additives for aqueous zinc-ion battery [J]. Guangzhou Chem., 2023, 48(4): 26, 43
2 沈琪彬, 陈泰强. 水系锌离子电池电解液添加剂研究进展 [J]. 广州化学, 2023, 48(4): 26, 43
3 Zhang L, Zhang B, Zhang T, et al. Eliminating dendrites and side reactions via a multifunctional ZnSe protective layer toward advanced aqueous Zn metal batteries [J]. Adv. Funct. Mater., 2021, 31: 2100186
4 Zhang Q, Luan J Y, Huang X B, et al. Revealing the role of crystal orientation of protective layers for stable zinc anode [J]. Nat. Commun., 2020, 11: 3961
doi: 10.1038/s41467-020-17752-x pmid: 32770066
5 Parker J F, Chervin C N, Nelson E S, et al. Wiring zinc in three dimensions re-writes battery performance—dendrite-free cycling [J]. Energy Environ. Sci., 2014, 7: 1117
6 Ning Q B, He L Z, Wang X, et al. Effects of alloying elements on electrochemical performance of zinc air battery anode [J]. J. Central South Univ. (Sci. Technol.), 2021, 52: 3389
6 宁庆波, 何立子, 王 鑫 等. 合金元素对锌空气电池阳极电化学性能的影响 [J]. 中南大学学报(自然科学版), 2021, 52: 3389
7 Xu M, Ivey D G, Qu W, et al. Study of the mechanism for electrodeposition of dendrite-free zinc in an alkaline electrolyte modified with 1-ethyl-3-methylimidazolium dicyanamide [J]. J. Power Sources, 2015, 274: 1249
8 Shi W C, Liu Y, Zhang B M, et al. Research progress and prospect on electrolyte additives for stabilizing the zinc anode interface in aqueous batteries [J]. Energy Storage Sci. Technol., 2023, 12: 1589
8 时文超, 刘 宇, 张博冕 等. 电解液添加剂稳定水系电池锌负极界面的研究进展 [J]. 储能科学与技术, 2023, 12: 1589
doi: 10.19799/j.cnki.2095-4239.2023.0089
9 Xu C J, Li B H, Du H D, et al. Energetic zinc ion chemistry: the rechargeable zinc ion battery [J]. Angew. Chem. Int. Ed., 2012, 51: 933
doi: 10.1002/anie.201106307 pmid: 22170816
10 Cao J, Zhang D D, Zhang X Y, et al. Strategies of regulating Zn2+ solvation structures for dendrite-free and side reaction-suppressed zinc-ion batteries [J]. Energy Environ. Sci., 2022, 15: 499
11 Ma L T, Li Q, Ying Y R, et al. Toward practical high-areal-capacity aqueous zinc-metal batteries: quantifying hydrogen evolution and a solid-ion conductor for stable zinc anodes [J]. Adv. Mater., 2021, 33: 2007406
12 Hao J N, Li X L, Zhang S L, et al. Designing dendrite-free zinc anodes for advanced aqueous zinc batteries [J]. Adv. Funct. Mater., 2020, 30: 2001263
13 Zhang L, Rodríguez-Pérez I A, Jiang H, et al. ZnCl2 “water-in-salt” electrolyte transforms the performance of vanadium oxide as a Zn battery cathode [J]. Adv. Funct. Mater., 2019, 29: 1902653
14 Wang J, Ning P D, Liu Q Q, et al. Corrosion behavior of galvanized steel in a simulated marine atmospheric environment [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 578
14 王 瑾, 宁培栋, 刘倩倩 等. 模拟海洋大气环境中镀锌钢的腐蚀行为和机理 [J]. 中国腐蚀与防护学报, 2023, 43: 578
15 Zeng X H, Xie K X, Liu S L, et al. Bio-inspired design of an in situ multifunctional polymeric solid-electrolyte interphase for Zn metal anode cycling at 30 mA cm-2 and 30 mA h cm-2 [J]. Energy Environ. Sci., 2021, 14: 5947
16 Sun R, Han D L, Cui C J, et al. A self-deoxidizing electrolyte additive enables highly stable aqueous zinc batteries [J]. Angew. Chem. Int. Ed., 2023, 62: e202303557
17 Zhou X Z, Lu Y, Zhang Q, et al. Exploring the interfacial chemistry between zinc anodes and aqueous electrolytes via an in situ visualized characterization system [J]. ACS Appl. Mater. Interfaces, 2020, 12: 55476
18 Xie C L, Liu S F, Yang Z F, et al. Discovering the intrinsic causes of dendrite formation in zinc metal anodes: Lattice defects and residual stress [J]. Angew. Chem. Int. Ed., 2023, 62: e202218612
19 Sasaki Y, Yoshida K, Kawasaki T, et al. In situ electron microscopy analysis of electrochemical Zn deposition onto an electrode [J]. J. Power Sources, 2021, 481: 228831
20 Yang Q, Li Q, Liu Z X, et al. Dendrites in Zn-based batteries [J]. Adv. Mater., 2020, 32: 2001854
21 Wang F, Borodin O, Gao T, et al. Highly reversible zinc metal anode for aqueous batteries [J]. Nat. Mater., 2018, 17: 543
doi: 10.1038/s41563-018-0063-z pmid: 29662160
22 Feng D D, Cao F Q, Hou L, et al. Immunizing aqueous Zn batteries against dendrite formation and side reactions at various temperatures via electrolyte additives [J]. Small, 2021, 17: 2103195
23 Hao J N, Yuan L B, Ye C, et al. Boosting zinc electrode reversibility in aqueous electrolytes by using low-cost antisolvents [J]. Angew. Chem. Int. Ed., 2021, 60: 7366
doi: 10.1002/anie.202016531 pmid: 33440043
24 Nguyen T T T, Zhao M S, Geng S J, et al. Ethylene glycol as an antifreeze additive and corrosion inhibitor for aqueous zinc-ion batteries [J]. Batteries Supercaps, 2022, 5: e202100420
25 Li J W, Zhou S, Chen Y N, et al. Self-smoothing deposition behavior enabled by beneficial potential compensating for highly reversible Zn-metal anodes [J]. Adv. Funct. Mater., 2023, 33: 2307201
26 Wei T T, Peng Y Q, Mo L E, et al. Modulated bonding interaction in propanediol electrolytes toward stable aqueous zinc-ion batteries [J]. Sci. China Mater., 2022, 65: 1156
26 韦婷婷, 彭昱琦, 莫立娥 等. 丙二醇电解液键结构调控及其水系锌离子电池稳定性研究 [J]. 中国科学: 材料科学, 2022, 65: 1156
27 Wu Z Z, Li M, Tian Y H, et al. Cyclohexanedodecol-assisted interfacial engineering for robust and high-performance zinc metal anode [J]. Nano-Micro Lett., 2022, 14: 110
doi: 10.1007/s40820-022-00846-0 pmid: 35441329
28 Luo M H, Wang C Y, Lu H T, et al. Dendrite-free zinc anode enabled by zinc-chelating chemistry [J]. Energy Stor. Mater., 2021, 41: 515
29 Li T C, Lim Y, Li X L, et al. A universal additive strategy to reshape electrolyte solvation structure toward reversible Zn storage [J]. Adv. Energy Mater., 2022, 12: 2103231
30 Zhu Y L, Hao J N, Huang Y, et al. A new insight of anti-solvent electrolytes for aqueous zinc-ion batteries by molecular modeling [J]. Small Struct., 2023, 4: 2200270
31 Deng J B, Luo H R, Gou Q Z, et al. Subnanocyclic molecule of 15-Crown-5 Inhibiting interfacial water decomposition and stabilizing zinc anodes via regulation of Zn2+ solvation shell [J]. J. Phys. Chem. Lett., 2023, 14: 9167
32 Zhao K, Fan G L, Liu J D, et al. Boosting the kinetics and stability of Zn anodes in aqueous electrolytes with supramolecular cyclodextrin additives [J]. J. Am. Chem. Soc., 2022, 144: 11129
doi: 10.1021/jacs.2c00551 pmid: 35700394
33 Ding F, Xu W, Graff G L, et al. Dendrite-free lithium deposition via self-healing electrostatic shield mechanism [J]. J. Am. Chem. Soc., 2013, 135: 4450
doi: 10.1021/ja312241y pmid: 23448508
34 Hu Z Q, Zhang F L, Zhao Y, et al. A self-regulated electrostatic shielding layer toward dendrite-free Zn batteries [J]. Adv. Mater., 2022, 34: 2203104
35 McCoy D E, Feo T, Harvey T A, et al. Structural absorption by barbule microstructures of super black bird of paradise feathers [J]. Nat. Commun., 2018, 9: 1
doi: 10.1038/s41467-017-02088-w pmid: 29317637
36 Wang P J, Xie X S, Xing Z Y, et al. Mechanistic insights of Mg2+-electrolyte additive for high-energy and long-life zinc-ion hybrid capacitors [J]. Adv. Energy Mater., 2021, 11: 2101158
37 Cui Y F, Cao R F, Hao Q, et al. Refining the grain size of zinc electrodeposit by Pb2+ ion grinding for compact and stable zinc anode [J]. Batteries Supercaps, 2023, 6: e202300074
38 Zhang X Q, Chen J, Cao H, et al. Efficient suppression of dendrites and side reactions by strong electrostatic shielding effect via the additive of Rb2SO4 for anodes in aqueous zinc-ion batteries [J]. Small, 2023, 19: 2303906
39 Bayaguud A, Luo X, Fu Y P, et al. Cationic surfactant-type electrolyte additive enables three-dimensional dendrite-free zinc anode for stable zinc-ion batteries [J]. ACS Energy Lett., 2020, 5: 3012
40 Yao R, Qian L, Sui Y M, et al. A versatile cation additive enabled highly reversible zinc metal anode [J]. Adv. Energy Mater., 2021, 12: 2102780
41 Zhou W J, Chen M F, Tian Q H, et al. Stabilizing zinc deposition with sodium lignosulfonate as an electrolyte additive to improve the life span of aqueous zinc-ion batteries [J]. J. Colloid Interf. Sci., 2021, 601: 486
doi: 10.1016/j.jcis.2021.05.134 pmid: 34090026
42 Huang C, Zhao X, Hao Y S, et al. Highly reversible zinc metal anodes enabled by protonated melamine [J]. J. Mater. Chem., 2022, 10A: 6636
43 Zhong Y, Cheng Z X, Zhang H W, et al. Monosodium glutamate, an effective electrolyte additive to enhance cycling performance of Zn anode in aqueous battery [J]. Nano Energy, 2022, 98: 107220
44 Gou Q Z, Luo H R, Zhang Q, et al. Electrolyte regulation of bio-inspired zincophilic additive toward high-performance dendrite-free aqueous zinc-ion batteries [J]. Small, 2023, 19: 2207502
45 Geng D L, Tang Y S, Han X, et al. Inhibition of dendrite growth and side reactions using histidine as electrolyte additive for aqueous Zn-ion batteries [J]. Int. J. Electrochem. Sci., 2023, 18: 100191
46 Li D M, Tang Y, Liang S Q, et al. Self-assembled multilayers direct a buffer interphase for long-life aqueous zinc-ion batteries [J]. Energy Environ. Sci., 2023, 16: 3381
47 Wang Y F, Mo L E, Zhang X X, et al. Facet-termination promoted uniform Zn (100) deposition for high-stable zinc-ion batteries [J]. Adv. Energy Mater., 2023, 13: 2301517
48 Zhao K, Liu F M, Fan G L, et al. Stabilizing zinc electrodes with a vanillin additive in mild aqueous electrolytes [J]. ACS Appl. Mater. Interfaces, 2021, 13: 47650
49 Qiu M J, Ma L, Sun P, et al. Manipulating interfacial stability via absorption-competition mechanism for long-lifespan Zn anode [J]. Nano-Micro Lett., 2021, 14: 31
doi: 10.1007/s40820-021-00777-2 pmid: 34902080
50 Guan K L, Tao L, Yang R, et al. Anti-corrosion for reversible zinc anode via a hydrophobic interface in aqueous zinc batteries [J]. Adv. Energy Mater., 2022, 12: 2103557
51 Zeng X M, Meng X J, Jiang W, et al. In-situ constructing polyacrylamide interphase enables dendrite-free zinc anode in aqueous batteries [J]. Electrochim. Acta, 2021, 378: 138106
52 Lu L L, Liu L J, Yao S L, et al. Degradation behavior of pure zinc and Zn-xLi alloy in artificial urine [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 765
52 陆黎立, 刘丽君, 姚生莲 等. Zn及锌锂合金在人工尿液中的腐蚀行为 [J]. 中国腐蚀与防护学报, 2021, 41: 765
doi: 10.11902/1005.4537.2020.205
53 Zeng X H, Mao J F, Hao J N, et al. Electrolyte design for in situ construction of highly Zn2+-conductive solid electrolyte interphase to enable high-performance aqueous Zn-ion batteries under practical conditions [J]. Adv. Mater., 2021, 33: 2007416
54 Guo X X, Zhang Z Y, Li J W, et al. Alleviation of dendrite formation on zinc anodes via electrolyte additives [J]. ACS Energy Lett., 2021, 6: 395
55 Huang C, Zhao X, Hao Y S, et al. Self-healing SeO2 additives enable zinc metal reversibility in aqueous ZnSO4 electrolytes [J]. Adv. Funct. Mater., 2022, 32: 2112091
56 Sun P, Ma L, Zhou W H, et al. Simultaneous regulation on solvation shell and electrode interface for dendrite-free Zn ion batteries achieved by a low-cost glucose additive [J]. Angew. Chem. Int. Ed., 2021, 60: 18247
57 Wang C, Hou J M, Gan Y P, et al. Unraveling the regulation of a polyhydroxy electrolyte additive for a reversible, dendrite-free zinc anode [J]. J. Mater. Chem., 2023, 11A: 8057
58 Wang H F, Ye W Q, Yin B W, et al. Modulating cation migration and deposition with xylitol additive and oriented reconstruction of hydrogen bonds for stable zinc anodes [J]. Angew. Chem. Int. Ed., 2023, 62: e202218872
59 Liu H, Xin Z J, Cao B, et al. Polyhydroxylated organic molecular additives for durable aqueous zinc battery [J]. Adv. Funct. Mater., 2024, 34: 2309840
60 Quan Y H, Yang M, Chen M F, et al. Electrolyte additive of sorbitol rendering aqueous zinc-ion batteries with dendrite-free behavior and good anti-freezing ability [J]. Chem. Eng. J., 2023, 458: 141392
61 Su T T, Wang K, Shao C Y, et al. Surface control behavior toward crystal regulation and anticorrosion capacity for zinc metal anodes [J]. ACS Appl. Mater. Interfaces, 2023, 15: 20040
62 Li X, Yao H, Li Y H, et al. Cellulose-complexing strategy induced surface regulation towards ultrahigh utilization rate of Zn [J]. J. Mater. Chem., 2023, 11A: 14720
63 Huang C, Zhao X, Liu S, et al. Stabilizing zinc anodes by regulating the electrical double layer with saccharin anions [J]. Adv. Mater., 2021, 33: 2100445
64 Wang B J, Zheng R, Yang W, et al. Synergistic solvation and interface regulations of eco-friendly silk peptide additive enabling stable aqueous zinc-ion batteries [J]. Adv. Funct. Mater., 2022, 32: 2112693
65 Zhou T Y, Mu Y L, Chen L, et al. Toward stable zinc aqueous rechargeable batteries by anode morphology modulation via polyaspartic acid additive [J]. Energy Stor. Mater., 2022, 45: 777
66 Han D L, Wang Z X, Lu H T, et al. A self-regulated interface toward highly reversible aqueous zinc batteries [J]. Adv. Energy Mater., 2022, 12: 2102982
67 Gao X, Dai Y H, Zhang C Y, et al. When it's heavier: interfacial and solvation chemistry of isotopes in aqueous electrolytes for Zn-ion batteries [J]. Angew. Chem. Int. Ed., 2023, 62: e202300608
68 Pan Y C, Liu Z X, Liu S N, et al. Quasi-decoupled solid–liquid hybrid electrolyte for highly reversible interfacial reaction in aqueous zinc-manganese battery [J]. Adv. Energy Mater., 2023, 13: 2203766
69 Yang L, Zhang T S, Liu S N, et al. Constructing ionic self-concentrated electrolyte via introducing montmorillonite toward high-performance aqueous Zn-MnO2 batteries [J]. Small Methods, 2023, 8(6): e2300009
70 Tian S Y, Hwang T, Estalaki S M, et al. A low-cost quasi-solid-state “water-in-swelling-clay” electrolyte enabling ultrastable aqueous zinc-ion batteries [J]. Adv. Energy Mater., 2023, 13: 2300782
71 Zhang X, Liao T, Long T, et al. In situ buildup of zinc anode protection films with natural protein additives for high-performance zinc battery cycling [J]. ACS Appl. Mater. Interfaces, 2023, 15: 32496
72 Wang Y, Zeng X H, Huang H J, et al. Manipulating the solvation structure and interface via a bio-based green additive for highly stable Zn metal anode [J]. Small Methods, 2023, 8(6): e2300804
73 Zhang X M, Luo H, Guo Y, et al. Chemical and electrochemical synergistic weaving stable interface enabling longevous zinc plating/stripping process [J]. Chem. Eng. J., 2023, 457: 141305
74 Wang S P, Zhao Y W, Lü H M, et al. Low-concentration redox-electrolytes for high-rate and long-life zinc metal batteries [J]. Small, 2023: e2207664
75 Dai Y H, Zhang C Y, Zhang W, et al. Reversible Zn metal anodes enabled by trace amounts of underpotential deposition initiators [J]. Angew. Chem. Int. Ed., 2023, 62: e202301192
76 Nie X Y, Miao L C, Yuan W T, et al. Cholinium cations enable highly compact and dendrite-free Zn metal anodes in aqueous electrolytes [J]. Adv. Funct. Mater., 2022, 32: 2203905
77 Wei T T, Ren Y K, Wang Y F, et al. Addition of dioxane in electrolyte promotes (002)-textured zinc growth and suppressed side reactions in zinc-ion batteries [J]. ACS Nano, 2023, 17: 3765
doi: 10.1021/acsnano.2c11516 pmid: 36752806
78 Wan J D, Wang R, Liu Z X, et al. A double-functional additive containing nucleophilic groups for high-performance Zn-ion batteries [J]. ACS Nano, 2023, 17: 1610
79 Li Z Z, Liao Y Q, Wang Y D, et al. A co-solvent in aqueous electrolyte towards ultralong-life rechargeable zinc-ion batteries [J]. Energy Stor. Mater., 2023, 56: 174
80 Qin H Y, Kuang W, Hu N, et al. Building metal-molecule interface towards stable and reversible Zn metal anodes for aqueous rechargeable zinc batteries [J]. Adv. Funct. Mater., 2022, 32: 2206695
81 He W, Ren Y, Lamsal B S, et al. Decreasing water activity using the tetrahydrofuran electrolyte additive for highly reversible aqueous zinc metal batteries [J]. ACS Appl. Mater. Interfaces, 2023, 15: 6647
82 Chen Y M, Gong F C, Deng W J, et al. Dual-function electrolyte additive enabling simultaneous electrode interface and coordination environment regulation for zinc-ion batteries [J]. Energy Stor. Mater., 2023, 58: 20
83 Yu Y Z, Zhang P F, Wang W Y, et al. Tuning the electrode/electrolyte interface enabled by a trifunctional inorganic oligomer electrolyte additive for highly stable and high-rate Zn anodes [J]. Small Methods, 2023, 7: 2300546
84 Li M, Xie K X, Peng R Y, et al. Surface protection and interface regulation for Zn anode via 1-hydroxy ethylidene-1,1-diphosphonic acid electrolyte additive toward high-performance aqueous batteries [J]. Small, 2022, 18: 2107398
85 Xu X, Yin J Y, Qin R M, et al. Simultaneous regulation on coordination environment and interfacial chemistry via taurine for stabilized Zn metal anode [J]. J. Energy Chem., 2023, 86: 343
doi: 10.1016/j.jechem.2023.07.036
86 Chen S, Ji D L, Chen Q W, et al. Coordination modulation of hydrated zinc ions to enhance redox reversibility of zinc batteries [J]. Nat. Commun., 2023, 14: 3526
doi: 10.1038/s41467-023-39237-3 pmid: 37316539
87 Wang M L, Cheng Y J, Zhao H N, et al. A multifunctional organic electrolyte additive for aqueous zinc ion batteries based on polyaniline cathode [J]. Small, 2023, 19: 2302105
88 Wang H L, Du H R, Zhao R R, et al. Stable Zn metal anodes enabled by restricted self-diffusion via succinimide surfactant [J]. Adv. Funct. Mater., 2023, 33: 2213803
89 Yu H M, Chen D P, Li Q Y, et al. In situ construction of anode-molecule interface via lone-pair electrons in trace organic molecules additives to achieve stable zinc metal anodes [J]. Adv. Energy Mater., 2023, 13: 2300550
90 Zhang Q, Ma Y L, Lu Y, et al. Designing anion-type water-free Zn2+ solvation structure for robust Zn metal anode [J]. Angew. Chem., Int. Ed., 2021, 60: 23357
91 Zhang H W, Zhong Y, Li J B, et al. Inducing the preferential growth of Zn (002) plane for long cycle aqueous Zn-ion batteries [J]. Adv. Energy Mater., 2023, 13: 2203254
92 Zhang D D, Cao J, Chanajaree R, et al. Reconstructing the anode interface and solvation shell for reversible zinc anodes [J]. ACS Appl. Mater. Interfaces, 2023, 15: 11940
[1] 王承涛, 申冠一, 许少毅, 李威, 王禹桥, 王树臣, 闻东东, 李朋宇. 基于物理场耦合的交流干扰作用下埋地金属管线腐蚀数值仿真[J]. 中国腐蚀与防护学报, 2024, 44(6): 1573-1580.
[2] 苏志诚, 张弦, 程焱, 刘静, 吴开明. 同成分的超细贝氏体钢和Q&P钢在海水中应力腐蚀开裂行为对比研究[J]. 中国腐蚀与防护学报, 2024, 44(6): 1495-1506.
[3] 翁硕, 孟超, 罗陵华, 袁奕雯, 赵礼辉, 冯金芝. 基于元胞自动机法的AA7075-T651铝合金在力-化学交互作用下腐蚀损伤特征演化规律研究[J]. 中国腐蚀与防护学报, 2024, 44(6): 1507-1517.
[4] 易铄, 周生璇, 叶鹏, 杜晓洁, 徐震霖, 何宜柱. 选区激光熔化成形含Cu中熵合金的微观组织及耐腐蚀性能[J]. 中国腐蚀与防护学报, 2024, 44(6): 1589-1600.
[5] 董楠, 秦慰蓉, 韩培德. SCl表面吸附及其对 γ-FeM(111)(M = CrNiMnMoCuCe)腐蚀的理论研究[J]. 中国腐蚀与防护学报, 2024, 44(6): 1566-1572.
[6] 王文泉, 崔宇, 薛蕴鹏, 刘莉, 王福会. 潮湿空气中应力耦合固态NaCl作用下GH4169合金的中温腐蚀行为研究[J]. 中国腐蚀与防护学报, 2024, 44(6): 1399-1411.
[7] 许志昱, 胡骞, 黄峰, 刘静, 卢献忠. 缝隙几何尺寸对闭塞区化学环境及腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2024, 44(6): 1581-1588.
[8] 王娅利, 管方, 段继周, 张丽娜, 杨政险, 侯保荣. 鼠李糖脂与2,2-二溴-3-次氮基丙酰胺协同抑制X80管线钢的微生物腐蚀[J]. 中国腐蚀与防护学报, 2024, 44(6): 1412-1422.
[9] 曹甫洋, 王浩权, 季谦, 丁恒楠, 袁志钟, 罗锐. 大气等离子喷涂FeCoCrNiMn高熵合金涂层的耐海水腐蚀与磨损性能[J]. 中国腐蚀与防护学报, 2024, 44(6): 1529-1537.
[10] 谢文珍, 王震宇, 韩恩厚. 耐蚀钢筋在模拟混凝土孔隙液环境及海砂混凝土中钢筋在模拟海水环境中的钝化及腐蚀行为[J]. 中国腐蚀与防护学报, 2024, 44(6): 1454-1464.
[11] 喻政, 陈明辉, 王金龙, 杨莎莎, 王福会. 煤灰中碱金属硫酸盐和氯盐含量对HR3C和渗铝HR3C不锈钢腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2024, 44(6): 1389-1398.
[12] 庞洁, 刘相局, 刘娜珍, 侯保荣. T2铜合金和Q235钢在模拟北山地下水环境中的电偶腐蚀行为研究[J]. 中国腐蚀与防护学报, 2024, 44(6): 1435-1442.
[13] 朱立洋, 陈俊全, 张欣欣, 董泽华, 蔡光义. 磁场对金属腐蚀影响的研究进展[J]. 中国腐蚀与防护学报, 2024, 44(5): 1117-1124.
[14] 尹洁, 高永浩, 易芳. Ag微合金化对Mg-Zn-Ca合金微观组织及腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2024, 44(5): 1274-1284.
[15] 程学雨, 叶桓, 郭程皓, 卢立新, 李伟哲. 苯骈三氮唑与苯甲酸钠在气相防锈膜中扩散机理的分子动力学模拟研究[J]. 中国腐蚀与防护学报, 2024, 44(5): 1323-1331.