|
|
中性水系锌离子电池负极缓蚀剂研究进展 |
吴浩天, 张天遂, 李广芳, 刘宏芳( ) |
华中科技大学 能源转换与储存材料化学教育部重点实验室 材料化学与服役失效湖北省重点实验室 化学与化工学院 武汉 430074 |
|
Corrosion Inhibitor for Zn Anode of Neutral Aqueous Zinc Ion Batteries |
WU Haotian, ZHANG Tiansui, LI Guangfang, LIU Hongfang( ) |
Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China |
引用本文:
吴浩天, 张天遂, 李广芳, 刘宏芳. 中性水系锌离子电池负极缓蚀剂研究进展[J]. 中国腐蚀与防护学报, 2024, 44(5): 1089-1099.
Haotian WU,
Tiansui ZHANG,
Guangfang LI,
Hongfang LIU.
Corrosion Inhibitor for Zn Anode of Neutral Aqueous Zinc Ion Batteries[J]. Journal of Chinese Society for Corrosion and protection, 2024, 44(5): 1089-1099.
1 |
Pei Y W, Zhang H, Wang X H. Recent advances in the electrolytes of rechargeable zinc-ion batteries [J]. Energy Storage Sci. Technol., 2022, 11: 2075
|
1 |
裴英伟, 张 红, 王星辉. 可充电锌离子电池电解质的研究进展 [J]. 储能科学与技术, 2022, 11: 2075
doi: 10.19799/j.cnki.2095-4239.2022.0040
|
2 |
Shen Q B, Chen T Q. Progress of electrolyte additives for aqueous zinc-ion battery [J]. Guangzhou Chem., 2023, 48(4): 26, 43
|
2 |
沈琪彬, 陈泰强. 水系锌离子电池电解液添加剂研究进展 [J]. 广州化学, 2023, 48(4): 26, 43
|
3 |
Zhang L, Zhang B, Zhang T, et al. Eliminating dendrites and side reactions via a multifunctional ZnSe protective layer toward advanced aqueous Zn metal batteries [J]. Adv. Funct. Mater., 2021, 31: 2100186
|
4 |
Zhang Q, Luan J Y, Huang X B, et al. Revealing the role of crystal orientation of protective layers for stable zinc anode [J]. Nat. Commun., 2020, 11: 3961
doi: 10.1038/s41467-020-17752-x
pmid: 32770066
|
5 |
Parker J F, Chervin C N, Nelson E S, et al. Wiring zinc in three dimensions re-writes battery performance—dendrite-free cycling [J]. Energy Environ. Sci., 2014, 7: 1117
|
6 |
Ning Q B, He L Z, Wang X, et al. Effects of alloying elements on electrochemical performance of zinc air battery anode [J]. J. Central South Univ. (Sci. Technol.), 2021, 52: 3389
|
6 |
宁庆波, 何立子, 王 鑫 等. 合金元素对锌空气电池阳极电化学性能的影响 [J]. 中南大学学报(自然科学版), 2021, 52: 3389
|
7 |
Xu M, Ivey D G, Qu W, et al. Study of the mechanism for electrodeposition of dendrite-free zinc in an alkaline electrolyte modified with 1-ethyl-3-methylimidazolium dicyanamide [J]. J. Power Sources, 2015, 274: 1249
|
8 |
Shi W C, Liu Y, Zhang B M, et al. Research progress and prospect on electrolyte additives for stabilizing the zinc anode interface in aqueous batteries [J]. Energy Storage Sci. Technol., 2023, 12: 1589
|
8 |
时文超, 刘 宇, 张博冕 等. 电解液添加剂稳定水系电池锌负极界面的研究进展 [J]. 储能科学与技术, 2023, 12: 1589
doi: 10.19799/j.cnki.2095-4239.2023.0089
|
9 |
Xu C J, Li B H, Du H D, et al. Energetic zinc ion chemistry: the rechargeable zinc ion battery [J]. Angew. Chem. Int. Ed., 2012, 51: 933
doi: 10.1002/anie.201106307
pmid: 22170816
|
10 |
Cao J, Zhang D D, Zhang X Y, et al. Strategies of regulating Zn2+ solvation structures for dendrite-free and side reaction-suppressed zinc-ion batteries [J]. Energy Environ. Sci., 2022, 15: 499
|
11 |
Ma L T, Li Q, Ying Y R, et al. Toward practical high-areal-capacity aqueous zinc-metal batteries: quantifying hydrogen evolution and a solid-ion conductor for stable zinc anodes [J]. Adv. Mater., 2021, 33: 2007406
|
12 |
Hao J N, Li X L, Zhang S L, et al. Designing dendrite-free zinc anodes for advanced aqueous zinc batteries [J]. Adv. Funct. Mater., 2020, 30: 2001263
|
13 |
Zhang L, Rodríguez-Pérez I A, Jiang H, et al. ZnCl2 “water-in-salt” electrolyte transforms the performance of vanadium oxide as a Zn battery cathode [J]. Adv. Funct. Mater., 2019, 29: 1902653
|
14 |
Wang J, Ning P D, Liu Q Q, et al. Corrosion behavior of galvanized steel in a simulated marine atmospheric environment [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 578
|
14 |
王 瑾, 宁培栋, 刘倩倩 等. 模拟海洋大气环境中镀锌钢的腐蚀行为和机理 [J]. 中国腐蚀与防护学报, 2023, 43: 578
|
15 |
Zeng X H, Xie K X, Liu S L, et al. Bio-inspired design of an in situ multifunctional polymeric solid-electrolyte interphase for Zn metal anode cycling at 30 mA cm-2 and 30 mA h cm-2 [J]. Energy Environ. Sci., 2021, 14: 5947
|
16 |
Sun R, Han D L, Cui C J, et al. A self-deoxidizing electrolyte additive enables highly stable aqueous zinc batteries [J]. Angew. Chem. Int. Ed., 2023, 62: e202303557
|
17 |
Zhou X Z, Lu Y, Zhang Q, et al. Exploring the interfacial chemistry between zinc anodes and aqueous electrolytes via an in situ visualized characterization system [J]. ACS Appl. Mater. Interfaces, 2020, 12: 55476
|
18 |
Xie C L, Liu S F, Yang Z F, et al. Discovering the intrinsic causes of dendrite formation in zinc metal anodes: Lattice defects and residual stress [J]. Angew. Chem. Int. Ed., 2023, 62: e202218612
|
19 |
Sasaki Y, Yoshida K, Kawasaki T, et al. In situ electron microscopy analysis of electrochemical Zn deposition onto an electrode [J]. J. Power Sources, 2021, 481: 228831
|
20 |
Yang Q, Li Q, Liu Z X, et al. Dendrites in Zn-based batteries [J]. Adv. Mater., 2020, 32: 2001854
|
21 |
Wang F, Borodin O, Gao T, et al. Highly reversible zinc metal anode for aqueous batteries [J]. Nat. Mater., 2018, 17: 543
doi: 10.1038/s41563-018-0063-z
pmid: 29662160
|
22 |
Feng D D, Cao F Q, Hou L, et al. Immunizing aqueous Zn batteries against dendrite formation and side reactions at various temperatures via electrolyte additives [J]. Small, 2021, 17: 2103195
|
23 |
Hao J N, Yuan L B, Ye C, et al. Boosting zinc electrode reversibility in aqueous electrolytes by using low-cost antisolvents [J]. Angew. Chem. Int. Ed., 2021, 60: 7366
doi: 10.1002/anie.202016531
pmid: 33440043
|
24 |
Nguyen T T T, Zhao M S, Geng S J, et al. Ethylene glycol as an antifreeze additive and corrosion inhibitor for aqueous zinc-ion batteries [J]. Batteries Supercaps, 2022, 5: e202100420
|
25 |
Li J W, Zhou S, Chen Y N, et al. Self-smoothing deposition behavior enabled by beneficial potential compensating for highly reversible Zn-metal anodes [J]. Adv. Funct. Mater., 2023, 33: 2307201
|
26 |
Wei T T, Peng Y Q, Mo L E, et al. Modulated bonding interaction in propanediol electrolytes toward stable aqueous zinc-ion batteries [J]. Sci. China Mater., 2022, 65: 1156
|
26 |
韦婷婷, 彭昱琦, 莫立娥 等. 丙二醇电解液键结构调控及其水系锌离子电池稳定性研究 [J]. 中国科学: 材料科学, 2022, 65: 1156
|
27 |
Wu Z Z, Li M, Tian Y H, et al. Cyclohexanedodecol-assisted interfacial engineering for robust and high-performance zinc metal anode [J]. Nano-Micro Lett., 2022, 14: 110
doi: 10.1007/s40820-022-00846-0
pmid: 35441329
|
28 |
Luo M H, Wang C Y, Lu H T, et al. Dendrite-free zinc anode enabled by zinc-chelating chemistry [J]. Energy Stor. Mater., 2021, 41: 515
|
29 |
Li T C, Lim Y, Li X L, et al. A universal additive strategy to reshape electrolyte solvation structure toward reversible Zn storage [J]. Adv. Energy Mater., 2022, 12: 2103231
|
30 |
Zhu Y L, Hao J N, Huang Y, et al. A new insight of anti-solvent electrolytes for aqueous zinc-ion batteries by molecular modeling [J]. Small Struct., 2023, 4: 2200270
|
31 |
Deng J B, Luo H R, Gou Q Z, et al. Subnanocyclic molecule of 15-Crown-5 Inhibiting interfacial water decomposition and stabilizing zinc anodes via regulation of Zn2+ solvation shell [J]. J. Phys. Chem. Lett., 2023, 14: 9167
|
32 |
Zhao K, Fan G L, Liu J D, et al. Boosting the kinetics and stability of Zn anodes in aqueous electrolytes with supramolecular cyclodextrin additives [J]. J. Am. Chem. Soc., 2022, 144: 11129
doi: 10.1021/jacs.2c00551
pmid: 35700394
|
33 |
Ding F, Xu W, Graff G L, et al. Dendrite-free lithium deposition via self-healing electrostatic shield mechanism [J]. J. Am. Chem. Soc., 2013, 135: 4450
doi: 10.1021/ja312241y
pmid: 23448508
|
34 |
Hu Z Q, Zhang F L, Zhao Y, et al. A self-regulated electrostatic shielding layer toward dendrite-free Zn batteries [J]. Adv. Mater., 2022, 34: 2203104
|
35 |
McCoy D E, Feo T, Harvey T A, et al. Structural absorption by barbule microstructures of super black bird of paradise feathers [J]. Nat. Commun., 2018, 9: 1
doi: 10.1038/s41467-017-02088-w
pmid: 29317637
|
36 |
Wang P J, Xie X S, Xing Z Y, et al. Mechanistic insights of Mg2+-electrolyte additive for high-energy and long-life zinc-ion hybrid capacitors [J]. Adv. Energy Mater., 2021, 11: 2101158
|
37 |
Cui Y F, Cao R F, Hao Q, et al. Refining the grain size of zinc electrodeposit by Pb2+ ion grinding for compact and stable zinc anode [J]. Batteries Supercaps, 2023, 6: e202300074
|
38 |
Zhang X Q, Chen J, Cao H, et al. Efficient suppression of dendrites and side reactions by strong electrostatic shielding effect via the additive of Rb2SO4 for anodes in aqueous zinc-ion batteries [J]. Small, 2023, 19: 2303906
|
39 |
Bayaguud A, Luo X, Fu Y P, et al. Cationic surfactant-type electrolyte additive enables three-dimensional dendrite-free zinc anode for stable zinc-ion batteries [J]. ACS Energy Lett., 2020, 5: 3012
|
40 |
Yao R, Qian L, Sui Y M, et al. A versatile cation additive enabled highly reversible zinc metal anode [J]. Adv. Energy Mater., 2021, 12: 2102780
|
41 |
Zhou W J, Chen M F, Tian Q H, et al. Stabilizing zinc deposition with sodium lignosulfonate as an electrolyte additive to improve the life span of aqueous zinc-ion batteries [J]. J. Colloid Interf. Sci., 2021, 601: 486
doi: 10.1016/j.jcis.2021.05.134
pmid: 34090026
|
42 |
Huang C, Zhao X, Hao Y S, et al. Highly reversible zinc metal anodes enabled by protonated melamine [J]. J. Mater. Chem., 2022, 10A: 6636
|
43 |
Zhong Y, Cheng Z X, Zhang H W, et al. Monosodium glutamate, an effective electrolyte additive to enhance cycling performance of Zn anode in aqueous battery [J]. Nano Energy, 2022, 98: 107220
|
44 |
Gou Q Z, Luo H R, Zhang Q, et al. Electrolyte regulation of bio-inspired zincophilic additive toward high-performance dendrite-free aqueous zinc-ion batteries [J]. Small, 2023, 19: 2207502
|
45 |
Geng D L, Tang Y S, Han X, et al. Inhibition of dendrite growth and side reactions using histidine as electrolyte additive for aqueous Zn-ion batteries [J]. Int. J. Electrochem. Sci., 2023, 18: 100191
|
46 |
Li D M, Tang Y, Liang S Q, et al. Self-assembled multilayers direct a buffer interphase for long-life aqueous zinc-ion batteries [J]. Energy Environ. Sci., 2023, 16: 3381
|
47 |
Wang Y F, Mo L E, Zhang X X, et al. Facet-termination promoted uniform Zn (100) deposition for high-stable zinc-ion batteries [J]. Adv. Energy Mater., 2023, 13: 2301517
|
48 |
Zhao K, Liu F M, Fan G L, et al. Stabilizing zinc electrodes with a vanillin additive in mild aqueous electrolytes [J]. ACS Appl. Mater. Interfaces, 2021, 13: 47650
|
49 |
Qiu M J, Ma L, Sun P, et al. Manipulating interfacial stability via absorption-competition mechanism for long-lifespan Zn anode [J]. Nano-Micro Lett., 2021, 14: 31
doi: 10.1007/s40820-021-00777-2
pmid: 34902080
|
50 |
Guan K L, Tao L, Yang R, et al. Anti-corrosion for reversible zinc anode via a hydrophobic interface in aqueous zinc batteries [J]. Adv. Energy Mater., 2022, 12: 2103557
|
51 |
Zeng X M, Meng X J, Jiang W, et al. In-situ constructing polyacrylamide interphase enables dendrite-free zinc anode in aqueous batteries [J]. Electrochim. Acta, 2021, 378: 138106
|
52 |
Lu L L, Liu L J, Yao S L, et al. Degradation behavior of pure zinc and Zn-xLi alloy in artificial urine [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 765
|
52 |
陆黎立, 刘丽君, 姚生莲 等. Zn及锌锂合金在人工尿液中的腐蚀行为 [J]. 中国腐蚀与防护学报, 2021, 41: 765
doi: 10.11902/1005.4537.2020.205
|
53 |
Zeng X H, Mao J F, Hao J N, et al. Electrolyte design for in situ construction of highly Zn2+-conductive solid electrolyte interphase to enable high-performance aqueous Zn-ion batteries under practical conditions [J]. Adv. Mater., 2021, 33: 2007416
|
54 |
Guo X X, Zhang Z Y, Li J W, et al. Alleviation of dendrite formation on zinc anodes via electrolyte additives [J]. ACS Energy Lett., 2021, 6: 395
|
55 |
Huang C, Zhao X, Hao Y S, et al. Self-healing SeO2 additives enable zinc metal reversibility in aqueous ZnSO4 electrolytes [J]. Adv. Funct. Mater., 2022, 32: 2112091
|
56 |
Sun P, Ma L, Zhou W H, et al. Simultaneous regulation on solvation shell and electrode interface for dendrite-free Zn ion batteries achieved by a low-cost glucose additive [J]. Angew. Chem. Int. Ed., 2021, 60: 18247
|
57 |
Wang C, Hou J M, Gan Y P, et al. Unraveling the regulation of a polyhydroxy electrolyte additive for a reversible, dendrite-free zinc anode [J]. J. Mater. Chem., 2023, 11A: 8057
|
58 |
Wang H F, Ye W Q, Yin B W, et al. Modulating cation migration and deposition with xylitol additive and oriented reconstruction of hydrogen bonds for stable zinc anodes [J]. Angew. Chem. Int. Ed., 2023, 62: e202218872
|
59 |
Liu H, Xin Z J, Cao B, et al. Polyhydroxylated organic molecular additives for durable aqueous zinc battery [J]. Adv. Funct. Mater., 2024, 34: 2309840
|
60 |
Quan Y H, Yang M, Chen M F, et al. Electrolyte additive of sorbitol rendering aqueous zinc-ion batteries with dendrite-free behavior and good anti-freezing ability [J]. Chem. Eng. J., 2023, 458: 141392
|
61 |
Su T T, Wang K, Shao C Y, et al. Surface control behavior toward crystal regulation and anticorrosion capacity for zinc metal anodes [J]. ACS Appl. Mater. Interfaces, 2023, 15: 20040
|
62 |
Li X, Yao H, Li Y H, et al. Cellulose-complexing strategy induced surface regulation towards ultrahigh utilization rate of Zn [J]. J. Mater. Chem., 2023, 11A: 14720
|
63 |
Huang C, Zhao X, Liu S, et al. Stabilizing zinc anodes by regulating the electrical double layer with saccharin anions [J]. Adv. Mater., 2021, 33: 2100445
|
64 |
Wang B J, Zheng R, Yang W, et al. Synergistic solvation and interface regulations of eco-friendly silk peptide additive enabling stable aqueous zinc-ion batteries [J]. Adv. Funct. Mater., 2022, 32: 2112693
|
65 |
Zhou T Y, Mu Y L, Chen L, et al. Toward stable zinc aqueous rechargeable batteries by anode morphology modulation via polyaspartic acid additive [J]. Energy Stor. Mater., 2022, 45: 777
|
66 |
Han D L, Wang Z X, Lu H T, et al. A self-regulated interface toward highly reversible aqueous zinc batteries [J]. Adv. Energy Mater., 2022, 12: 2102982
|
67 |
Gao X, Dai Y H, Zhang C Y, et al. When it's heavier: interfacial and solvation chemistry of isotopes in aqueous electrolytes for Zn-ion batteries [J]. Angew. Chem. Int. Ed., 2023, 62: e202300608
|
68 |
Pan Y C, Liu Z X, Liu S N, et al. Quasi-decoupled solid–liquid hybrid electrolyte for highly reversible interfacial reaction in aqueous zinc-manganese battery [J]. Adv. Energy Mater., 2023, 13: 2203766
|
69 |
Yang L, Zhang T S, Liu S N, et al. Constructing ionic self-concentrated electrolyte via introducing montmorillonite toward high-performance aqueous Zn-MnO2 batteries [J]. Small Methods, 2023, 8(6): e2300009
|
70 |
Tian S Y, Hwang T, Estalaki S M, et al. A low-cost quasi-solid-state “water-in-swelling-clay” electrolyte enabling ultrastable aqueous zinc-ion batteries [J]. Adv. Energy Mater., 2023, 13: 2300782
|
71 |
Zhang X, Liao T, Long T, et al. In situ buildup of zinc anode protection films with natural protein additives for high-performance zinc battery cycling [J]. ACS Appl. Mater. Interfaces, 2023, 15: 32496
|
72 |
Wang Y, Zeng X H, Huang H J, et al. Manipulating the solvation structure and interface via a bio-based green additive for highly stable Zn metal anode [J]. Small Methods, 2023, 8(6): e2300804
|
73 |
Zhang X M, Luo H, Guo Y, et al. Chemical and electrochemical synergistic weaving stable interface enabling longevous zinc plating/stripping process [J]. Chem. Eng. J., 2023, 457: 141305
|
74 |
Wang S P, Zhao Y W, Lü H M, et al. Low-concentration redox-electrolytes for high-rate and long-life zinc metal batteries [J]. Small, 2023: e2207664
|
75 |
Dai Y H, Zhang C Y, Zhang W, et al. Reversible Zn metal anodes enabled by trace amounts of underpotential deposition initiators [J]. Angew. Chem. Int. Ed., 2023, 62: e202301192
|
76 |
Nie X Y, Miao L C, Yuan W T, et al. Cholinium cations enable highly compact and dendrite-free Zn metal anodes in aqueous electrolytes [J]. Adv. Funct. Mater., 2022, 32: 2203905
|
77 |
Wei T T, Ren Y K, Wang Y F, et al. Addition of dioxane in electrolyte promotes (002)-textured zinc growth and suppressed side reactions in zinc-ion batteries [J]. ACS Nano, 2023, 17: 3765
doi: 10.1021/acsnano.2c11516
pmid: 36752806
|
78 |
Wan J D, Wang R, Liu Z X, et al. A double-functional additive containing nucleophilic groups for high-performance Zn-ion batteries [J]. ACS Nano, 2023, 17: 1610
|
79 |
Li Z Z, Liao Y Q, Wang Y D, et al. A co-solvent in aqueous electrolyte towards ultralong-life rechargeable zinc-ion batteries [J]. Energy Stor. Mater., 2023, 56: 174
|
80 |
Qin H Y, Kuang W, Hu N, et al. Building metal-molecule interface towards stable and reversible Zn metal anodes for aqueous rechargeable zinc batteries [J]. Adv. Funct. Mater., 2022, 32: 2206695
|
81 |
He W, Ren Y, Lamsal B S, et al. Decreasing water activity using the tetrahydrofuran electrolyte additive for highly reversible aqueous zinc metal batteries [J]. ACS Appl. Mater. Interfaces, 2023, 15: 6647
|
82 |
Chen Y M, Gong F C, Deng W J, et al. Dual-function electrolyte additive enabling simultaneous electrode interface and coordination environment regulation for zinc-ion batteries [J]. Energy Stor. Mater., 2023, 58: 20
|
83 |
Yu Y Z, Zhang P F, Wang W Y, et al. Tuning the electrode/electrolyte interface enabled by a trifunctional inorganic oligomer electrolyte additive for highly stable and high-rate Zn anodes [J]. Small Methods, 2023, 7: 2300546
|
84 |
Li M, Xie K X, Peng R Y, et al. Surface protection and interface regulation for Zn anode via 1-hydroxy ethylidene-1,1-diphosphonic acid electrolyte additive toward high-performance aqueous batteries [J]. Small, 2022, 18: 2107398
|
85 |
Xu X, Yin J Y, Qin R M, et al. Simultaneous regulation on coordination environment and interfacial chemistry via taurine for stabilized Zn metal anode [J]. J. Energy Chem., 2023, 86: 343
doi: 10.1016/j.jechem.2023.07.036
|
86 |
Chen S, Ji D L, Chen Q W, et al. Coordination modulation of hydrated zinc ions to enhance redox reversibility of zinc batteries [J]. Nat. Commun., 2023, 14: 3526
doi: 10.1038/s41467-023-39237-3
pmid: 37316539
|
87 |
Wang M L, Cheng Y J, Zhao H N, et al. A multifunctional organic electrolyte additive for aqueous zinc ion batteries based on polyaniline cathode [J]. Small, 2023, 19: 2302105
|
88 |
Wang H L, Du H R, Zhao R R, et al. Stable Zn metal anodes enabled by restricted self-diffusion via succinimide surfactant [J]. Adv. Funct. Mater., 2023, 33: 2213803
|
89 |
Yu H M, Chen D P, Li Q Y, et al. In situ construction of anode-molecule interface via lone-pair electrons in trace organic molecules additives to achieve stable zinc metal anodes [J]. Adv. Energy Mater., 2023, 13: 2300550
|
90 |
Zhang Q, Ma Y L, Lu Y, et al. Designing anion-type water-free Zn2+ solvation structure for robust Zn metal anode [J]. Angew. Chem., Int. Ed., 2021, 60: 23357
|
91 |
Zhang H W, Zhong Y, Li J B, et al. Inducing the preferential growth of Zn (002) plane for long cycle aqueous Zn-ion batteries [J]. Adv. Energy Mater., 2023, 13: 2203254
|
92 |
Zhang D D, Cao J, Chanajaree R, et al. Reconstructing the anode interface and solvation shell for reversible zinc anodes [J]. ACS Appl. Mater. Interfaces, 2023, 15: 11940
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|