Please wait a minute...
中国腐蚀与防护学报  2024, Vol. 44 Issue (2): 405-412     CSTR: 32134.14.1005.4537.2023.146      DOI: 10.11902/1005.4537.2023.146
  研究报告 本期目录 | 过刊浏览 |
双功能铝酸钙改性硅溶胶钢筋涂层
杨胜杰1, 高燕1, 高旭1, 赵鹏2,3, 吴伟1, 于金山2,3, 张俊喜1()
1.上海电力大学 电力材料防护与新材料上海市重点实验室 上海 200090
2.国网天津市电力公司电力科学研究院 天津 300384
3.天津市电力物联网企业重点实验室 天津 300384
Bifunctional Calcium Aluminate Modified Silica Sol Coating for Reinforced Bar
YANG Shengjie1, GAO Yan1, GAO Xu1, ZHAO Peng2,3, WU Wei1, YU Jinshan2,3, ZHANG Junxi1()
1.Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, Shanghai University of Electric Power, Shanghai 200090, China
2.State Grid Tianjin Electric Power Research Institute, Tianjin 300384, China
3.Tianjin Key Laboratory of Internet of Things in Electricity, Tianjin 300384, China
引用本文:

杨胜杰, 高燕, 高旭, 赵鹏, 吴伟, 于金山, 张俊喜. 双功能铝酸钙改性硅溶胶钢筋涂层[J]. 中国腐蚀与防护学报, 2024, 44(2): 405-412.
Shengjie YANG, Yan GAO, Xu GAO, Peng ZHAO, Wei WU, Jinshan YU, Junxi ZHANG. Bifunctional Calcium Aluminate Modified Silica Sol Coating for Reinforced Bar[J]. Journal of Chinese Society for Corrosion and protection, 2024, 44(2): 405-412.

全文: PDF(4718 KB)   HTML
摘要: 

制备了一种用于混凝土结构中钢筋表面腐蚀防护的硅溶胶涂层,以水玻璃为前驱体,在涂层制备中引入铝酸钙填料,研究了铝酸钙(C3A)不同添加量对涂层防护性能的影响。采用XRD、FT-IR、SEM、离子色谱仪以及电化学测量技术对C3A及水化物的结构形貌、离子交换能力、涂层的结构形貌及腐蚀防护性能进行表征。结果表明,铝酸钙在涂料制备中可以水化形成LDH,且水化后的LDHs具有的阴离子交换功能,可吸附腐蚀介质中的侵蚀性Cl-。同时LDHs本身的片层状结构有助于缓解涂层固化过程中产生的内应力,消除涂层产生的开裂,且可有效提高涂层的阻隔性能,减缓Cl-等侵蚀性离子到达钢筋表面的速率,进而提升硅溶胶涂层对钢筋腐蚀的防护性能。

关键词 铝酸钙硅溶胶涂层钢筋阴离子交换功能填料    
Abstract

A silica sol coating for corrosion protection of reinforce bars in concrete structures was prepared via mechanical blending and ultrasonic dispersion with water glass as the film precursor and calcium aluminate as filler. Then the effect of different amounts of calcium aluminate addition on the protective performance of the coating was studied. The structural morphology and ion exchange ability of calcium aluminate and its hydrates, as well as the structural morphology and protective performance of the coating were characterized by XRD, FT-IR, SEM, ion chromatograph analysis and electrochemical measurement. The results indicate that calcium aluminate can be hydrated to form LDH during the coating preparation, thus due to their anion exchange function, LDHs can absorb corrosive chloride ions from corrosive media, meanwhile, the layered structure of LDHs may be benefit to alleviate the internal stress generated during the coating curing process, in turn, eliminate the cracking in the coating and improve effectively the barrier performance of the coating, while slow down the infiltration rate of chloride ions and other corrosive ions reaching the surface of the steel bar, eventually enhance the protective performance of the silica sol coating against the steel bar corrosion.

Key wordscalcium aluminate    silica sol    coating    a steel bar    anion exchange    functional filler
收稿日期: 2023-05-08      32134.14.1005.4537.2023.146
ZTFLH:  TG174  
基金资助:国网天津市电力公司科技项目(KJ21-1-12)
通讯作者: 张俊喜,E-mail:zhangjunxi@shiep.edu.cn,研究方向为金属腐蚀与防护
Corresponding author: ZHANG Junxi, E-mail: zhangjunxi@shiep.edu.cn
作者简介: 杨胜杰,女,1997年生,硕士生
图1  C3A对Cl-的交换容量随时间的变化
图2  C3A离子交换前后SEM形貌和交换后C3A的EDS分析
图3  C3A离子交换前后的红外谱图
图4  C3A离子交换前后的XRD
图5  添加C3A涂层与未添加涂层的XRD谱
图6  添加C3A前后涂层截面SEM图
图7  不同添加量涂层样品的极化曲线
Additive / gEcorr / V vs SCEI0 / A·cm-2
Blank-0.641.09 × 10-6
0.2 g-0.5504.4 × 10-9
0.5 g-0.3753.08 × 10-10
0.8 g-0.5795.24 × 10-9
表1  不同添加量涂层的极化曲线拟合数据
图8  不同添加量涂层的Bode图
图9  不同添加量的涂层等效电路
图10  涂层Rf及Rct随时间变化图
Sample

Time

d

CPE1

nΩ-1·S n ·cm-2

Freq1

Rf

Ω·cm2

CPE2

nΩ-1·S n ·cm-2

Freq2

Rct

Ω·cm2

W
0.2 g17.09 × 10-100.91042.58 × 1081.261 × 10-70.65325.09 × 108/
38.808 × 10-90.85035.82 × 1078.504 × 10-100.91164.75 × 107/
56.661 × 10-100.91782.30 × 1071.269 × 10-80.64422.48 × 107/
76.17 × 10-110.63121.22 × 1074.929 × 10-110.65641.53 × 107/
91.708 × 10-110.90015.05 × 1066.351 × 10-90.5151.24 × 107/
111.609 × 10-90.59242.30 × 1061.165 × 10-50.70874.70 × 1068.794 × 1012
132.384 × 10-60.643716731.21 × 10-50.7477516901.097 × 10-17
153.184 × 10-60.6451557.51.336 × 10-50.73674.97 × 1043.428 × 10-16
0.5 g17.425 × 10-100.94112.88 × 1081.594 × 10-100.93086.68 × 108/
38.501 × 10-100.89171.07 × 1087.441 × 10-100.89.76 × 107/
59.217 × 10-100.8884.09 × 1072.038 × 10-80.55389.45 × 107/
75.738 × 10-80.83.62 × 1077.538 × 10-100.90592.11 × 107/
98.977 × 10-100.90891.21 × 1075 × 10-80.81.65 × 107/
114.398 × 10-90.83471.95 × 1061.1 × 10-70.66231.62 × 1071.723 × 10-6
131.967 × 10-80.7934397104.309 × 10-70.67471.45 × 1074.38 × 10-8
151.117 × 10-70.7301123101.55 × 10-60.6821.34 × 1071 × 1020
0.8 g17.439 × 10-100.91055.95 × 1062.162 × 10-80.59734.37 × 1087.5 × 10-7
36.956 × 10-100.91354.11 × 1061.811 × 10-80.60731.50 × 1077.5 × 10-7
51.331 × 10-80.82843.75 × 1068.562 × 10-100.90781.60 × 1074.679 × 10-7
75.368 × 10-80.2542.63 × 1061.466 × 10-90.85321.30 × 1074.804 × 10-7
96.631 × 10-90.92091.17 × 1062.861 × 10-70.5189.51 × 1061.385 × 10-5
111.173 × 10-90.92921.02 × 1065.268 × 10-80.43798.86 × 1063.668 × 10-5
131.823 × 10-90.92418823004.362 × 10-80.55156.27 × 1061.855 × 10-6
151.999 × 10-80.8314419204.995 × 10-70.62291.20 × 1063.526 × 10-7
表2  不同添加量的涂层的拟合值
1 Ma Y L, Zhang A L. Probability model of corrosion initiation time of steel in concrete structure in chloride environment[J]. Adv. Mater. Res., 2011, 243-249: 5632
2 Meredith P, Donald A M, Meller N, et al. Tricalcium aluminate hydration: microstructural observations by in-situ electron microscopy[J]. J. Mater. Sci., 2004, 39: 997
doi: 10.1023/B:JMSC.0000012933.74548.36
3 Meredith P, Donald A M, Meller N, et al. Tricalcium aluminate hydration: microstructural observations by in-situ electron microscopy[J]. J. Mater. Sci., 2004, 39: 997
doi: 10.1023/B:JMSC.0000012933.74548.36
4 Ming X, Li Y J, Liu Q, et al. Chloride binding behaviors and early age hydration of tricalcium aluminate in chloride-containing solutions[J]. Cem. Concr. Compos., 2023, 137: 104928
doi: 10.1016/j.cemconcomp.2023.104928
5 Birnin-Yauri U A, Glasser F P. Friedel’s salt, Ca2Al(OH)6(Cl,OH)·2H2O: its solid solutions and their role in chloride binding[J]. Cem. Concr. Res., 1998, 28: 1713
doi: 10.1016/S0008-8846(98)00162-8
6 Andrade Neto J S, de Matos P R, De la Torre A G, et al. The role of sodium and sulfate sources on the rheology and hydration of C3A polymorphs[J]. Cem. Concr. Res., 2022, 151: 106639
doi: 10.1016/j.cemconres.2021.106639
7 Kalinichev A G, Kirkpatrick R J. Molecular dynamics modeling of chloride binding to the surfaces of calcium hydroxide, hydrated calcium aluminate, and calcium silicate phases[J]. Chem. Mater., 2002, 14: 3539
doi: 10.1021/cm0107070
8 Pekna M, Siqin S, de Pablo Y, et al. Astrocyte responses to complement peptide C3a are highly context-dependent[J]. Neurochem. Res., 2023, 48: 1233
doi: 10.1007/s11064-022-03743-5
9 Liu H F, Cui X M, Zhang W P, et al. Low cost fabrication of anti-corrosive coatings on metal surfaces[J]. Rare Met. Mater. Eng., 2008, 37(suppl.1) : 341
9 刘海锋, 崔学民, 张伟鹏 等. 低成本制备铁基金属表面防腐蚀无机涂层[J]. 稀有金属材料与工程, 2008, 37(): 341
10 Luo R, Cai Y B, Wang C Y. Binding capability of chloride ions in mortar and paste with ground granulated blast furnace slag[J]. J. Build. Mater., 2001, 4: 148
10 罗 睿, 蔡跃波, 王昌义. 磨细矿渣净浆和砂浆结合外渗氯离子的性能[J]. 建筑材料学报, 2001, 4: 148
11 Guo M L, Xiao J, Wang J L. Role of calcium ion on chloride binding in hydrated C3A pastes blended with CaCO3 and CaSO4·2H2O[J]. J. Build. Mater., 2020, 23: 1
11 郭明磊, 肖 佳, 王佳雷. CaCO3和CaSO4·2H2O共同作用下Ca2+对C3A水化浆体固化氯离子性能的影响[J]. 建筑材料学报, 2020, 23: 1
12 Wang X M, Hou P K, Yu J H, et al. The effects of silica fume on C3A hydration[J]. Constr. Build. Mater., 2020, 250: 118766
doi: 10.1016/j.conbuildmat.2020.118766
13 Hughes T L, Methven C M, Jones T G J, et al. Determining cement composition by Fourier transform infrared spectroscopy[J]. Adv. Cem. Based Mater., 1995, 2: 91
doi: 10.1016/1065-7355(94)00031-X
14 Chen X C, Yao C C, Zhao T, et al. Immobilization remediation of Cr-contaminated soils by hydrocalumite and the relevant risk assessment[J]. China Environ. Sci., 2021, 41: 1790
14 陈晓晨, 尧聪聪, 赵 桐 等. 水化氯铝酸钙对土壤铬的钝化修复及风险评估[J]. 中国环境科学, 2021, 41: 1790
15 Wang S J, Lu D, Yuan S Z, et al. Complement C3a receptor inactivation attenuates retinal degeneration induced by oxidative damage[J]. Front. Neurosci., 2022, 16: 951491
doi: 10.3389/fnins.2022.951491
16 Ye S X, Feng P, Liu Y, et al. In situ nano-scale observation of C3A dissolution in water[J]. Cem. Concr. Res., 2020, 132: 106044
doi: 10.1016/j.cemconres.2020.106044
17 Hou P K, Wang X M, Zhou X M, et al. Regulations on the hydration, morphology, and sulfate-attack resistivity of C3A with micro/nano-silica particles[J]. Constr. Build. Mater., 2022, 324: 126388
doi: 10.1016/j.conbuildmat.2022.126388
18 Chen Y F, Meng F D, Qu Y Y, et al. One-step synthesis of superhydrophobic polyaniline capsules and its effect on corrosion resistance of organic coatings[J]. J. Chin. Soc. Corros. Prot., 2023, 43: 345
18 陈异凡, 孟凡帝, 曲优异 等. 超疏水聚苯胺胶囊的一步可控合成及其对有机涂层防腐性能的影响[J]. 中国腐蚀与防护学报, 2023, 43: 345
doi: 10.11902/1005.4537.2022.089
19 Jamali F, Danaee I, Zaarei D. Effect of nano-silica on the corrosion behavior of silicate conversion coatings on hot-dip galvanized steel[J]. Mater. Corros., 2015, 66: 459
20 Santana I, Pepe A, Jimenez-Pique E, et al. Silica-based hybrid coatings for corrosion protection of carbon steel. Part I: effect of pretreatment with phosphoric acid[J]. Surf. Coat. Technol., 2013, 236: 476
doi: 10.1016/j.surfcoat.2012.07.086
21 Zhao S Y, Tong X H, Liu F C, et al. Corrosion resistance of three zinc-rich epoxy coatings[J]. J. Chin. Soc. Corros. Prot., 2019, 39: 563
21 赵书彦, 童鑫红, 刘福春 等. 环氧富锌涂层防腐蚀性能研究[J]. 中国腐蚀与防护学报, 2019, 39: 563
doi: 10.11902/1005.4537.2019.231
22 Liu S H, Liu B, Xu D W, et al. Research progress on anti-corrosion coatings of layered double hydroxides[J]. J. Chin. Soc. Corros. Prot., 2022, 42: 16
22 刘术辉, 刘 斌, 徐大伟 等. 层状双金属氢氧化物防腐蚀涂层材料的研究进展[J]. 中国腐蚀与防护学报, 2022, 42: 16
doi: 10.11902/1005.4537.2021.021
[1] 商百慧, 马元泰, 孟美江, 李瑛, 娄明, 白晶. HRB400钢筋在模拟混凝土孔隙液环境中的阳极极化特征[J]. 中国腐蚀与防护学报, 2024, 44(2): 422-428.
[2] 刘国强, 张东方, 陈昊翔, 范志宏. 带轧皮预锈钢筋在混凝土养护期间的自然钝化行为研究[J]. 中国腐蚀与防护学报, 2024, 44(2): 505-511.
[3] 韩东晓, 纪文会, 王通, 王巍. 基于弛豫时间分布和有限元模拟的环氧涂层渗水行为研究[J]. 中国腐蚀与防护学报, 2024, 44(2): 489-496.
[4] 李硕, 李希超, 赵经香, 戴作强, 徐斌, 孙明月, 郑莉莉. 基于涂层改性炮管寿命的研究进展[J]. 中国腐蚀与防护学报, 2024, 44(2): 295-302.
[5] 赵鹏, 郝春艳, 杨胜杰, 于金山, 武爽, 于奔, 张俊喜. 钢筋表面双功能磷酸氢钛改性的硅溶胶涂层研究[J]. 中国腐蚀与防护学报, 2024, 44(2): 413-421.
[6] 师超, 李嘉浩, 王荣祥, 张博, 周兰欣, 刘光明, 邵亚薇. 不同偏压对45#钢电弧离子镀铝层耐蚀性能的影响[J]. 中国腐蚀与防护学报, 2024, 44(2): 323-334.
[7] 姜伯晨, 类延华, 张玉良, 李晓峰, 刘涛, 董丽华. 功能性超疏水涂层在极地抗冰领域的应用研究进展[J]. 中国腐蚀与防护学报, 2024, 44(1): 1-14.
[8] 刘国强, 张东方, 陈昊翔, 范志宏, 熊建波, 吴清发. 2304双相不锈钢钢筋在混凝土孔隙模拟液中的电化学腐蚀行为研究[J]. 中国腐蚀与防护学报, 2024, 44(1): 204-212.
[9] 袁小虎, 李定骏, 王天剑, 郭显平, 张乃强, 朱忠亮. 超临界水环境中三种Ni-Cr涂层氧化特性研究[J]. 中国腐蚀与防护学报, 2024, 44(1): 119-129.
[10] 李建呈, 赵京, 谢新, 王金龙, 陈明辉, 王福会. 钛合金表面磷酸盐涂层的制备及在高温盐-水蒸气环境中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2024, 44(1): 159-166.
[11] 凡玉方, 张亚飞, 尹刘森, 赵聪慧, 何艳宾, 张传祥. 碳点在金属防腐领域中的研究进展[J]. 中国腐蚀与防护学报, 2023, 43(6): 1237-1246.
[12] 曲卫卫, 陈泽浩, 裴延玲, 李树索, 王福会. CMAS熔体在不同热障涂层用材料表面的铺展和腐蚀行为[J]. 中国腐蚀与防护学报, 2023, 43(6): 1407-1412.
[13] 田光元, 严程铭, 杨智皓, 王俊升. 耐腐蚀Mg-Li合金的腐蚀与防护及其性能研究进展[J]. 中国腐蚀与防护学报, 2023, 43(6): 1255-1263.
[14] 张凯丽, 都俐俐, 谭军, 刘祥周, 马骥, 邱萍. 珊瑚簇状SiO2 超滑防腐涂层的制备及性能研究[J]. 中国腐蚀与防护学报, 2023, 43(6): 1319-1328.
[15] 肖文涛, 刘静, 彭晶晶, 张弦, 吴开明. 两种电弧喷涂涂层在中性盐雾环境下的耐蚀性能对比研究[J]. 中国腐蚀与防护学报, 2023, 43(5): 1003-1014.