Please wait a minute...
中国腐蚀与防护学报  2024, Vol. 44 Issue (2): 323-334     CSTR: 32134.14.1005.4537.2023.120      DOI: 10.11902/1005.4537.2023.120
  研究报告 本期目录 | 过刊浏览 |
不同偏压对45#钢电弧离子镀铝层耐蚀性能的影响
师超1(), 李嘉浩1, 王荣祥2, 张博2, 周兰欣1, 刘光明1, 邵亚薇3
1.南昌航空大学 江西省金属材料微结构调控重点实验室 南昌 330063
2.工业和信息化部电子第五研究所 广州 510610
3.哈尔滨工程大学材料科学与化学工程学院 哈尔滨 150001
Effect of Different Bias Voltages on Anti-corrosion Properties of Multi-arc Ion Plated Al-coatings on 45# Carbon Steel
SHI Chao1(), LI Jiahao1, WANG Rongxiang2, ZHANG Bo2, ZHOU Lanxin1, LIU Guangming1, SHAO Yawei3
1.Key Laboratory for Microstructural Control of Metallic Materials of Jiangxi Province, Nanchang Hang Kong University, Nanchang 330063, China
2.The 5th Electronics Research Institute of the Ministry of Industry and Information Technology, Guangzhou 510610, China
3.College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
引用本文:

师超, 李嘉浩, 王荣祥, 张博, 周兰欣, 刘光明, 邵亚薇. 不同偏压对45#钢电弧离子镀铝层耐蚀性能的影响[J]. 中国腐蚀与防护学报, 2024, 44(2): 323-334.
Chao SHI, Jiahao LI, Rongxiang WANG, Bo ZHANG, Lanxin ZHOU, Guangming LIU, Yawei SHAO. Effect of Different Bias Voltages on Anti-corrosion Properties of Multi-arc Ion Plated Al-coatings on 45# Carbon Steel[J]. Journal of Chinese Society for Corrosion and protection, 2024, 44(2): 323-334.

全文: PDF(33718 KB)   HTML
摘要: 

采用不同偏压参数(0、-50、-100、-200、-300 V)电弧离子镀(AIP)沉积铝涂层。通过扫描电子显微镜(SEM)和能谱仪(EDS)对不同参数下镀铝涂层的表面及截面特征进行分析;采用开路电位(OCP)、电化学阻抗谱(EIS)和电化学极化(EI)等电化学测试及中性盐雾实验对不同参数下的镀铝涂层防护性进行研究。结果表明:随着偏压的增大,镀铝涂层孔隙及粗糙度表现出先减小后增大的趋势。各偏压参数下的镀铝涂层试样的OCP稳定在-0.72~-0.77 V之间,电荷转移电阻在(1.50~2.98) × 104 Ω·cm2之间,自腐蚀电流密度在(1.18~5.49) × 10-6 A·cm-2之间,耐蚀性明显优于45#碳钢。经336 h盐雾实验后,各偏压参数下的镀铝涂层试样仍具有一定的防护性能,镀层及铁铝扩散层对于铁基体表现为阴极保护机制,其中偏压-200 V的镀铝涂层防护性能更优。因此,当靶电流55 A、Ar压力1.0 Pa、偏压-200 V时,AIP所制备铝涂层结构致密,与基体结合良好,具有优异的防护性能。

关键词 多弧离子镀镀铝涂层耐蚀性电化学测试盐雾实验    
Abstract

Al-coating is considered to be an ideal protective coating for steels. Multi-arc ion plating Al-coating is of significance for improving steel corrosion resistance, because multi-arc ion plating has advantages, such as non-toxicity, non-pollution, low-energy consumption, and easy operation etc. In this paper, multi-arc ion plated Al-coatings on 45# carbon steel were prepared by setting different bias parameters (0, -50, -100, -200, -300 V). Their surface and cross-section morphologies were characterized by scanning electron microscope (SEM) and energy-dispersive X-ray spectroscopy (EDS). The protective properties of the coatings prepared by different bias parameters were studied by electrochemical means, such as open circuit potential (OCP) measurement, electrochemical impedance spectroscopy (EIS), electrochemical polarization (EI) measurement and neutral salt spray test. The results showed that the number of pores and roughness of the Al-coatings decrease first then increase with the increasing bias voltages. Correspondingly, their OCPs, charge transfer resistances and free-corrosion current densities were stable between -0.72~-0.77 V, (1.50~2.98) × 104 Ω·cm2, and (1.18~5.49) × 10-6 A·cm-2, respectively. It is worthy noted that the corrosion resistance of the Al-coatings was obviously better than that of the bare 45# carbon steel. Being subjected to neutral salt spray test for 336 h, the Al-coatings still exhibit protective performance to certain extent because of cathodic protection mechanism, especially the Al-coating prepared by -200 V had excellent protective properties. In conclusion, the Al-coating, which was prepared by the following process parameters i.e., target current 55 A, Ar gas pressure 1.0 Pa, and bias voltage -200 V, is compact with better adhesive to the substrate thus exhibits the best protective performance.

Key wordsmulti-arc ion plating    aluminized coating    corrosion resistance    electrochemical testing    salt spray test
收稿日期: 2023-04-19      32134.14.1005.4537.2023.120
ZTFLH:  TG156  
基金资助:国家自然科学基金(52001155);江西省自然科学基金(111236715013);博士启动基金(EA201901056)
通讯作者: 师超,男,1989年生,博士,讲师,E-mail:shichao@nchu.edu.cn,研究方向为金属材料的腐蚀与防护
Corresponding author: SHI Chao, E-mail: shichao@nchu.edu.cn
作者简介: 师超,男,1989年生,博士,讲师
ParameterValue
Bias voltage / VExperimental value
Flow of Ar / m3·s-11.67 × 107
Arc current / A55
Deposition time / min30
Background pressure / Pa0.9~1.0
Chamber temperature / oC200
表1  Al涂层的沉积参数
图1  不同偏压下镀铝涂层表面宏观形貌
图2  不同偏压镀铝试样的微观形貌
图3  不同偏压下镀铝涂层表面微观形貌及能谱结果
图4  不同偏压下45#碳钢镀铝涂层截面形貌及能谱结果
图5  不同偏压下镀铝涂层的粗糙度变化关系
图6  不同偏压下镀铝涂层及基体的开路电位
图7  不同偏压下镀铝涂层的EIS测试结果
图8  镀铝试样的阻抗谱等效电路模型

Bias

V

Rs

Ω·cm2

Cdl

Ω·cm-2·S n

Rt

Ω·cm2

Chsq
Blank10.471.72 × 10-31.53 × 1032.40 × 10-3
07.1771.38 × 10-52.46 × 1042.12 × 10-2
-506.8051.30 × 10-52.03 × 1046.15 × 10-3
-1007.3091.49 × 10-52.29 × 1042.43 × 10-2
-2007.4121.31 × 10-52.98 × 1042.69 × 10-2
-3007.0231.56 × 10-51.50 × 1041.98 × 10-2
表2  不同偏压参数下镀铝涂层EIS测量结果的拟合参数
图9  不同偏压下镀铝涂层的极化曲线
Bias / VIcorr / A·cm-2
Blank1.19 × 10-5
05.49 × 10-6
-501.41 × 10-6
-1001.66 × 10-6
-2001.18 × 10-6
-3001.62 × 10-6
表3  不同偏压下的镀铝涂层自腐蚀电流密度拟合结果
图10  45#碳钢和不同偏压下沉积的铝涂层经不同时间盐雾后的表面形貌
图11  不同偏压下沉积的铝涂层经盐雾实验336 h后的腐蚀形貌
图12  盐雾实验48 h后镀铝涂层的微观表面形貌及能谱分析
图13  盐雾实验336 h后镀铝涂层的微观表面形貌及能谱分析
图14  镀铝层在不同阶段的腐蚀机理图
1 Xia J M, Li Z Y, Wang X Q, et al. Study on erosion and corrosion behavior and protection of steel in flowing artificial seawater[J]. Surf. Technol., 2021, 50(11): 306
1 夏江敏, 李竹影, 王晓强 等. 钢在流动人造海水中的冲刷腐蚀行为与防护研究[J]. 表面技术, 2021, 50(11): 306
2 Jin L B, Liang X Y, Wang Z, et al. Research progress of carbon steel corrosion in seawater full lmmersion zone[J]. Corros. Prot., 2020, 41(10): 33
2 金立兵, 梁新亚, 王 珍 等. 碳钢在海水全浸区腐蚀的研究进展[J]. 腐蚀与防护, 2020, 41(10): 33
3 Hou M Y. Study on corrosion behavior of Q235 carbon steel in seawater environment[D]. Wuhan: Wuhan University of Technology, 2020
3 侯明宇. 海水环境下Q235碳钢的腐蚀行为研究[D]. 武汉: 武汉理工大学, 2020
4 Li X L. Study on multiprincipal CoCrNi coating on 45 steel surface by plasma cladding[D]. Tianjin: Tiangong University, 2021
4 李小龙. 45钢表面等离子熔覆多主元CoCrNi涂层的研究[D]. 天津: 天津工业大学, 2021
5 Tan Y S, Rong X W, Han H. Comparison of properties of Ni-Co-P coating and Ni-W-P coating prepared by electroless plating on surface of 45 steel rod-shaped parts[J]. Plat. Finish., 2020, 42(9): 1
5 谭宇硕, 容旭巍, 韩 瀚. 45钢杆件化学镀Ni-Co-P及Ni-W-P镀层的性能比较[J]. 电镀与精饰, 2020, 42(9): 1
6 Lin X L, Wang Y B, Xin Y C, et al. Localized electrochemical corrosion behavior of the interface of hot-dip galvanized coating[J]. Surf. Technol., 2022, 51(9): 217
6 林学亮, 王友彬, 辛延琛 等. 热浸镀锌层界面的微区电化学腐蚀行为[J]. 表面技术, 2022, 51(9): 217
7 Li B. Study on replacement of Cd or Cd-Ti electroplating by metallic-ceramic anticorrosive coating[J]. Electroplat. Finish., 2021, 40(6): 410
7 李 博. 金属陶瓷防腐蚀涂层替代镀镉或镉-钛工艺的研究[J]. 电镀与涂饰, 2021, 40(6): 410
8 Wu X X. Study on the mechanism of hydrogen permeation in the process of cadmium electroplating in high strength steel[D]. Tianjin: Civil Aviation University of China, 2018
8 吴欣欣. 高强度钢电镀镉过程中渗氢机理研究[D]. 天津: 中国民航大学, 2018
9 Maki J. Corrosion behavior of aluminized steel sheets in 50-year outdoor exposure test[J]. ISIJ Int., 2019, 59(10): 1870
doi: 10.2355/isijinternational.ISIJINT-2019-017
10 Zhan Z W, Sun Z H, Tang Z H, et al. Comparison study on performance of IVD and ILEp aluminum coatings[J]. Equip. Environ. Eng., 2017, 14(5): 74
10 詹中伟, 孙志华, 汤智慧 等. 离子镀铝与离子液体电镀铝涂层性能对比研究[J]. 装备环境工程, 2017, 14(5): 74
11 Ding Y H. Research on aluminum plating technology by ion vapor deposition[J]. Plat. Finish., 2016, 38(12): 6
11 丁艳红. 离子气相沉积镀铝技术研究[J]. 电镀与精饰, 2016, 38(12): 6
12 Zhan Z W, Sun Z H, Peng C. Protective performance comparison of aluminium-based coatings on 300M steel surface[J]. Plat. Finish., 2015, 37(9): 1
12 詹中伟, 孙志华, 彭 超. 300M钢表面铝基涂层防护性能对比研究[J]. 电镀与精饰, 2015, 37(9): 1
13 Wang Y, Zhao X N, Dang X A, et al. Aluminizing steel surface for providing protection in marine environment: a technological review[J]. Mater. Rep., 2018, 32(21): 3805
13 王 瑶, 赵雪妮, 党新安 等. 海洋环境下钢材表面镀铝工艺的研究进展[J]. 材料导报, 2018, 32(21): 3805
14 Mei H F, Feng Z W, Liu Y, et al. Effect of hot-dip aluminizing on surface microstructure and high temperature oxidation resistance of 316L stainless steel[J]. Ordnance Mater. Sci. Eng., 2021, 44(5): 33
14 梅海峰, 冯志文, 刘 亚 等. 热浸镀铝对316L不锈钢表面组织和抗高温氧化性的影响[J]. 兵器材料科学与工程, 2021, 44(5): 33
15 Kainuma S, Yang M Y, Gao Y, et al. Long-term deterioration mechanism of hot-dip aluminum coating exposed to a coastal-atmospheric environment[J]. Constr. Build. Mater., 2021, 280: 122516
doi: 10.1016/j.conbuildmat.2021.122516
16 Romanowska J. Aluminum diffusion in aluminide coatings deposited by the CVD method on pure nickel[J]. Calphad, 2014, 44: 114
doi: 10.1016/j.calphad.2013.09.003
17 Zhang L, Wu Y, Dun Y Z, et al. Preparation of aluminide coating on hollow-blade inner-cavity by CVD method[J]. Heat Treat. Met., 2019, 44(5): 124
17 张 磊, 吴 勇, 顿易章 等. 采用CVD法制备空心叶片内腔铝化物涂层[J]. 金属热处理, 2019, 44(5): 124
18 Huang J Y, Zhong Q, Huang H G, et al. Structure analysis of aluminized coatings on P92 steel prepared by pack cementation aluminizing and vapor aluminizing[J]. Therm. Power Gener., 2020, 49(3): 124
18 黄锦阳, 钟 强, 黄浩刚 等. P92耐热钢粉末包埋渗铝与化学气相渗铝涂层组织结构研究[J]. 热力发电, 2020, 49(3): 124
19 Li W, Huang H, Huang W Y, et al. Research progress on surface state and element diffusion mechanism of steel with surface coating prepared by pack aluminizing method[J]. China Surf. Eng., 2021, 34(3): 25
19 李 微, 黄 煌, 黄伟颖 等. 钢表面粉末包埋渗铝的表面状态及元素扩散机理研究进展[J]. 中国表面工程, 2021, 34(3): 25
20 Kitada A, Nakamura K, Fukami K, et al. Electrochemically active species in aluminum electrodeposition baths of AlCl3/glyme solutions[J]. Electrochim. Acta, 2016, 211: 561
doi: 10.1016/j.electacta.2016.05.063
21 Hou Y Y, Li R Q, Liang J, et al. Electropolishing of Al and Al alloys in AlCl3/trimethylamine hydrochloride ionic liquid[J]. Surf. Coat. Technol., 2018, 335: 72
doi: 10.1016/j.surfcoat.2017.12.028
22 Zhang X M, Zhang J L, Yu Y C, et al. Effect of deposition time on corrosion resistance of Al-coated AZ31 magnesium alloy[J]. Surf. Technol., 2019, 48(10): 251
22 张晓敏, 张金玲, 于彦冲 等. 沉积时间对镀铝层AZ31镁合金耐蚀性的影响[J]. 表面技术, 2019, 48(10): 251
23 Sun Z H, Liu M, Zhang X Y, et al. Corrosion property at marine atmosphere of Al based coatings replacing Cd on high strength steels[J]. Equip. Environ. Eng., 2017, 14(12): 71
23 孙志华, 刘 明, 张晓云 等. 高强度钢代镉铝基涂层耐海洋环境腐蚀性能评价[J]. 装备环境工程, 2017, 14(12): 71
24 Yang H Y, Wei T G, Zhang R Q, et al. Effect of arc ion plating technological parameters on the deposition and properties of Cr coatings[J]. Mater. Prot., 2021, 54(12): 97
24 杨红艳, 韦天国, 张瑞谦 等. 电弧离子镀工艺参数对Cr涂层沉积及性能的影响[J]. 材料保护, 2021, 54(12): 97
25 Song Z H, Dai M J, Li H, et al. Effect of arc ion plating bias on structure and properties of TiAlSiN films[J]. Surf. Technol., 2020, 49(9): 306
25 宋智辉, 代明江, 李 洪 等. 电弧离子镀偏压对TiAlSiN涂层结构及性能的影响[J]. 表面技术, 2020, 49(9): 306
26 Feng C J, Hu X, Jiang Y F. Effect of bias voltage on the properties of TiAlN coating by shielded arc ion plating[J]. J. Nanchang Hangkong Univ. (Nat. Sci.), 2013, 27(2): 63
26 冯长杰, 胡 弦, 江鸢飞. 偏压对挡板电弧离子镀TiAlN涂层性能的影响[J]. 南昌航空大学学报(自然科学版), 2013, 27(2): 63
27 Huang R M, Dai M J, Lin S S, et al. Preparation and properties of CrN film by arc ion plating[J]. Heat Treat. Met., 2017, 42(10): 164
27 黄儒明, 代明江, 林松盛 等. 电弧离子镀CrN薄膜的制备及性能研究[J]. 金属热处理, 2017, 42(10): 164
28 Dong C C, Wang H R, Huang G S, et al. Corrosion behavior of cold-sprayed aluminum coating in seawater[J]. Corros. Sci. Prot. Technol., 2010, 22(2): 90
28 董彩常, 王洪仁, 黄国胜 等. 冷喷涂铝涂层在海水中的腐蚀行为研究[J]. 腐蚀科学与防护技术, 2010, 22(2): 90
29 Chen H L, Li X J, Wei Y. Corrosion mechanism of carbon steel in chloride solution[J]. Corros. Prot., 2007, 28(1): 17
29 陈惠玲, 李晓娟, 魏 雨. 碳钢在含氯离子环境中腐蚀机理的研究[J]. 腐蚀与防护, 2007, 28(1): 17
[1] 谢云, 刘婷, 王雯, 周佳琳, 唐颂. 微观组织对一种超轻高强镁锂合金耐蚀性的影响[J]. 中国腐蚀与防护学报, 2024, 44(1): 255-260.
[2] 王靖羽, 周学杰, 王洪伦, 吴军, 陈昊, 郑鹏华. 碳钢和高强钢在南海大气环境中的初期腐蚀行为研究[J]. 中国腐蚀与防护学报, 2024, 44(1): 237-245.
[3] 孙硕, 代珈铭, 宋影伟, 艾彩娇. 挤压态EW75稀土镁合金在沈阳工业大气环境中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2024, 44(1): 141-150.
[4] 常雪婷, 宋嘉琪, 王冰, 王东胜, 陈文聪, 王海丰. 微合金化对高锰奥氏体钢在酸性盐雾环境下的耐蚀性能影响研究[J]. 中国腐蚀与防护学报, 2024, 44(1): 47-58.
[5] 王泉润, 侯进, 侯保荣, 田惠文. 气相缓蚀剂分析方法研究进展[J]. 中国腐蚀与防护学报, 2023, 43(6): 1189-1202.
[6] 王晓, 李明, 刘峰, 王忠平, 李相波, 李宁旺. 温度对B10铜镍合金管冲刷腐蚀行为影响规律研究[J]. 中国腐蚀与防护学报, 2023, 43(6): 1329-1338.
[7] 商婷, 蒋光锐, 刘广会, 秦汉成. 热处理对Zn-6%Al-3%Mg镀层微观组织与耐蚀性的影响[J]. 中国腐蚀与防护学报, 2023, 43(6): 1413-1418.
[8] 杨海峰, 袁志钟, 李健, 周乃鹏, 高峰. Ni含量对铜时效易焊接钢在模拟热带海洋大气环境下的腐蚀行为影响[J]. 中国腐蚀与防护学报, 2023, 43(5): 1022-1030.
[9] 陈肖寒, 白杨, 王志超, 陈从棕, 张勇, 崔显林, 左娟娟, 王同良. 低表面处理环氧防腐底漆的制备及其耐蚀性研究[J]. 中国腐蚀与防护学报, 2023, 43(5): 1126-1132.
[10] 任黄威, 廖伯凯, 崔琳晶, 项腾飞. 液膜厚度对固态超滑表面在薄液膜下腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2023, 43(4): 862-870.
[11] 丁立, 邹文杰, 张雪姣, 陈均. ADC12铝合金表面硅锆复合转化膜的研究[J]. 中国腐蚀与防护学报, 2023, 43(4): 903-910.
[12] 刘超, 陈天奇, 李晓刚. 低合金钢中夹杂物诱发局部腐蚀萌生机制的研究进展[J]. 中国腐蚀与防护学报, 2023, 43(4): 746-754.
[13] 肖檬, 王勤英, 张兴寿, 西宇辰, 白树林, 董立谨, 张进, 杨俊杰. 激光淬火对AISI 4130钢微观组织结构及腐蚀、磨损行为的影响机制[J]. 中国腐蚀与防护学报, 2023, 43(4): 713-724.
[14] 吴嘉豪, 吴量, 姚文辉, 袁媛, 谢治辉, 王敬丰, 潘复生. Mg-Gd-Y-Zn-Mn合金不同微弧氧化表面MgAlLa层状双羟基金属氧化物复合涂层的性能研究[J]. 中国腐蚀与防护学报, 2023, 43(4): 693-703.
[15] 汪涵敏, 黄峰, 袁玮, 张佳伟, 王昕煜, 刘静. 新型Cu-Mo耐候钢在模拟海洋大气环境中的腐蚀行为[J]. 中国腐蚀与防护学报, 2023, 43(3): 507-515.