Please wait a minute...
中国腐蚀与防护学报  2024, Vol. 44 Issue (1): 204-212     CSTR: 32134.14.1005.4537.2022.417      DOI: 10.11902/1005.4537.2022.417
  研究报告 本期目录 | 过刊浏览 |
2304双相不锈钢钢筋在混凝土孔隙模拟液中的电化学腐蚀行为研究
刘国强1(), 张东方1,2, 陈昊翔1, 范志宏1,2, 熊建波1,2, 吴清发3
1.中交四航工程研究院有限公司 水工构造物耐久性技术交通运输行业重点实验室 广州 510230
2.南方海洋科学与工程广东省实验室(珠海) 珠海 519080
3.港珠澳大桥管理局 珠海 519080
Electrochemical Corrosion Behavior of 2304 Duplex Stainless Steel in a Simulated Pore Solution in Reinforced Concrete Serving in Marine Environment
LIU Guoqiang1(), ZHANG Dongfang1,2, CHEN Haoxiang1, FAN Zhihong1,2, XIONG Jianbo1,2, WU Qingfa3
1.Key Laboratory of Harbor & Marine Structure Durability Technology, Ministry of Transport, CCCC Fourth Harbor Engineering Institute Co., Ltd., Guangzhou 510230, China
2.Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519080, China
3.Hong Kong -Zhuhai -Macao Bridge Authority, Zhuhai 519080, China
引用本文:

刘国强, 张东方, 陈昊翔, 范志宏, 熊建波, 吴清发. 2304双相不锈钢钢筋在混凝土孔隙模拟液中的电化学腐蚀行为研究[J]. 中国腐蚀与防护学报, 2024, 44(1): 204-212.
Guoqiang LIU, Dongfang ZHANG, Haoxiang CHEN, Zhihong FAN, Jianbo XIONG, Qingfa WU. Electrochemical Corrosion Behavior of 2304 Duplex Stainless Steel in a Simulated Pore Solution in Reinforced Concrete Serving in Marine Environment[J]. Journal of Chinese Society for Corrosion and protection, 2024, 44(1): 204-212.

全文: PDF(7045 KB)   HTML
摘要: 

采用开路电位测试、电化学阻抗谱测试、动电位极化曲线测试及Mott-Schottky曲线测试研究了HRB400普通碳素钢筋、304奥氏体不锈钢钢筋与2304奥氏体-铁素体型双相不锈钢钢筋在海洋环境中的钝化行为、耐氯盐侵蚀性能及耐蚀机理。结果表明,在混凝土孔隙模拟液中,3种钢筋在混凝土孔隙模拟液中的腐蚀电位不断提升,阻抗模值、相位角峰宽均逐渐增大,最大相位角向低频方向移动。Mott-Schottky测试结果显示,HRB400钢筋钝化膜中点缺陷密度较高,2304双相不锈钢钢筋钝化膜的点缺陷密度最小。在含氯混凝土孔隙模拟液中,HRB400钢筋、304不锈钢钢筋和2304双相不锈钢钢筋的临界Cl-浓度范围分别为0.02~0.03、1.5~2.0和3.5~4.0 mol/L,其中2304双相不锈钢钢筋较强的耐氯盐侵蚀性能主要是因为钢筋表面钝化膜较低的点缺陷密度和致密的结构,以及Cr、Ni、Mo等耐蚀元素形成的钝化膜对Cl-较强的排斥作用。

关键词 不锈钢钢筋海洋环境钝化行为耐氯盐侵蚀性能    
Abstract

The corrosion behavior of rebar steels such as HRB400 plain carbon steel, 304 austenitic stainless steel and 2304 austenitic-ferritic duplex stainless steel in an artificial solution, which aims to simulate the fluids in pores of reinforced concrete serving in marine environments, was comparatively investigated by means of measurements of open-circuit potential, electrochemical impedance spectrum, dynamic potential polarization curve and Mott-Schottky curve etc. The results showed that the corrosion potential of the three rebar steels in the simulated solution increased continuously, the impedance modulus and phase angle peak width increased gradually, and the maximum phase angle shifted to the low frequency direction. Mott-Schottky curve measurement results showed that the point defect density in the passivation film of HRB400 plain steel was high, and that in the passivation film of 2304 duplex stainless steel was minimal. The critical chloride ion concentrations for HRB400 plain steel, 304 stainless steel and 2304 duplex stainless steel are in the range of 0.02-0.03, 1.5-2.0 and 3.5-4.0 mol/L, respectively. While the excellent resistance to chloride-induced corrosion of 2304 duplex stainless steel was mainly due to the lower point defect density and compact structure, as well as the enrichment in Cr, Ni, Mo and other corrosion-resistant elements of the passivation film on the steel surface, which enable the passive film stronger repulsive effect on the Cl- ions.

Key wordsstainless steel rebar    marine environment    passivation behavior    chloride-induced corrosion resistance
收稿日期: 2023-01-06      32134.14.1005.4537.2022.417
ZTFLH:  TG172.5  
基金资助:国家重点研发计划(2019YFB1600700)
通讯作者: 刘国强,男,1997年生,硕士,助理工程师,E-mail:liuguoqiang020@163.com,研究方向为材料腐蚀与防护、海洋钢筋混凝土结构耐久性
Corresponding author: LIU Guoqiang, E-mail: liuguoqiang020@163.com
作者简介: 刘国强,男,1997年生,硕士,助理工程师
MaterialCSiMnPSNCrNiMoCuFe
HRB4000.250.801.600.0450.045-----Bal.
304 stainless steel0.071.002.000.0450.0150.1117.5-19.58.0-10.5--Bal.
2304 duplex stainless steel0.031.002.000.0350.0150.05-0.2022.0-24.03.5-5.50.10-0.600.10-0.60Bal.
表1  3种实验用钢筋的主要化学成分 (mass fraction / %)
图1  3种钢筋在混凝土孔隙模拟液中的OCP随时间变化图
图2  3种钢筋在混凝土孔隙模拟液不同浸泡时间下的EIS
图3  拟合所采用的等效电路图
图4  3种钢筋EIS拟合结果
图5  3种钢筋在混凝土孔隙模拟中钝化10 d后的Mott-Schottky曲线图
RebarND / NAEfb
HRB4002.76 × 1021-0.693
304 stainless steel1.07 × 10210.685
2304 duplex stainless steel8.63 × 10200.541
表2  3种钢筋生成钝化膜的载流子密度和平带电位
图6  3种钢筋在混凝土孔隙模拟液中浸泡1和240 h后的动电位极化曲线及腐蚀电流密度
图7  3种钢筋在不同含氯混凝土孔隙模拟液中的OCP随NaCl浓度变化
图8  3种钢筋在不同含氯混凝土孔隙模拟液中的EIS
图9  3种钢筋在不同含氯混凝土孔隙模拟液中的EIS拟合结果随NaCl浓度变化
图10  3种钢筋在含4.5 mol/L NaCl混凝土孔隙模拟液中的Mott-Schottky曲线图
RebarND1NA1ND2NA2
HRB4008.41 × 10218.98 × 10215.24 × 10219.72 × 1021
304 stainless steel3.15 × 10212.94 × 1021-3.07 × 1021
2304 duplex stainless steel2.45 × 10218.62 × 10203.08 × 10212.07 × 1021
表3  3种钢筋在含4.5 mol/L NaCl的混凝土孔隙模拟液中表面钝化膜的载流子密度
图11  3种钢筋在不同含氯混凝土孔隙模拟液中的动电位极化曲线图及腐蚀电流密度
1 Hou B R, Zhang D, Wang P. Marine corrosion and protection: Current status and prospect [J]. Bull. Chin. Acad. Sci., 2016, 31: 1326
1 侯保荣, 张 盾, 王 鹏. 海洋腐蚀防护的现状与未来 [J]. 中国科学院院刊, 2016, 31: 1326
2 Ahmad S. Reinforcement corrosion in concrete structures, its monitoring and service life prediction-a review [J]. Cem. Concr. Compos., 2003, 25: 459
3 Andrade C, Keddam M, Nóvoa X R, et al. Electrochemical behaviour of steel rebars in concrete: influence of environmental factors and cement chemistry [J]. Electrochim. Acta, 2001, 46: 3905
doi: 10.1016/S0013-4686(01)00678-8
4 Angst U, Elsener B, Larsen C K, et al. Critical chloride content in reinforced concrete-A review [J]. Cem. Concr. Res., 2009, 39: 1122
doi: 10.1016/j.cemconres.2009.08.006
5 Moser R D, Singh P M, Kahn L F, et al. Chloride-induced corrosion resistance of high-strength stainless steels in simulated alkaline and carbonated concrete pore solutions [J]. Corros. Sci., 2012, 57: 241
doi: 10.1016/j.corsci.2011.12.012
6 Chen X D, Zhang Q, Gu X, et al. Probability analysis on service life prediction of reinforced concrete structures [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 673
6 陈宣东, 章 青, 顾 鑫 等. 基于概率分析的钢筋混凝土结构服役寿命预测研究 [J]. 中国腐蚀与防护学报, 2021, 41: 673
doi: 10.11902/1005.4537.2020.209
7 Chen L, Qu Y, Tang Y B, et al. Critical chloride concentration of stainless steels in simulated concrete pore solutions [J]. Corros. Prot., 2014, 35: 446
7 陈 龙, 瞿 彧, 汤雁冰 等. 不锈钢钢筋的临界氯离子浓度 [J]. 腐蚀与防护, 2014, 35: 446
8 Yuan X W. Study on natural passivation and depassivation behavior of stainless steel in simulated concrete pore solution [D]. Hefei: University of Science and Technology of China, 2021
8 苑旭雯. 模拟混凝土孔隙液中不锈钢自然钝化及脱钝行为研究 [D]. 合肥: 中国科学技术大学, 2021
9 Shi J J, Sun W. Equivalent circuits fitting of electrochemical impedance spectroscopy for corrosion of reinforcing steel in concrete [J]. Corros. Sci. Prot. Technol., 2011, 23: 387
9 施锦杰, 孙 伟. 等效电路拟合钢筋锈蚀行为的电化学阻抗谱研究 [J]. 腐蚀科学与防护技术, 2011, 23: 387
10 Lin Y H, Du R G, Hu R G, et al. A correlation study of corrosion resistance and semiconductor properties for the electrochemically modified passive film of stainless steel [J]. Acta Phys. - Chem. Sin., 2005, 21: 740
10 林玉华, 杜荣归, 胡融刚 等. 不锈钢钝化膜耐蚀性与半导体特性的关联研究 [J]. 物理化学学报, 2005, 21: 740
11 Morrison R S. Electrochemistry at Semiconductor and Oxidized Metal Electrodes [M]. New York: Plenum Press, 1980
12 Macdonald D D. The point defect model for the passive state [J]. J. Electrochem. Soc., 1992, 139: 3434
doi: 10.1149/1.2069096
13 Chao C Y, Lin L F, Macdonald D D. A point defect model for anodic passive films: I. Film growth kinetics [J]. J. Electrochem. Soc., 1981, 128: 1187
doi: 10.1149/1.2127591
14 Shang B H, Ma Y T, Meng M J, et al. Characterisation of passive film on HRB400 steel rebar in curing stage of concrete [J]. Chin. J. Mater. Res., 2019, 33: 659
doi: 10.11901/1005.3093.2019.068
14 商百慧, 马元泰, 孟美江 等. 混凝土养护期间HRB400钢筋钝化行为研究 [J]. 材料研究学报, 2019, 33: 659
doi: 10.11901/1005.3093.2019.068
15 Yuan X W, Li W T, Wang X, et al. Mo effect on natural passivation and corrosion behavior of duplex stainless steels in alkaline media [J]. J. Electrochem. Soc., 2020, 167: 161509
doi: 10.1149/1945-7111/abd36f
16 Wang D Q. Investigation of the passivity and chloride-induced behavior of new corrosion-resistant steel rebar in concrete [D]. Nanjing: Southeast University, 2016
16 王丹芊. 新型耐蚀钢筋在混凝土环境中的钝化及氯盐侵蚀行为研究 [D]. 南京: 东南大学, 2016
17 Du J B. The research of semiconducting properties of the passive film formed on 304 stainless steel in seawater [D]. Qingdao: Ocean University of China, 2007
17 杜建波. 304不锈钢钝化膜在海水介质中的半导体特性研究 [D]. 青岛: 中国海洋大学, 2007
18 McCafferty E. Introduction to Corrosion Science [M]. New York: Springer, 2010
19 McCafferty E. Surface Chemistry of Aqueous Corrosion Processes [M]. Cham: Springer, 2015
20 Yates D E, Healy T W. Mechanism of anion adsorption at the ferric and chromic oxide/water interfaces [J]. J. Colloid Interface Sci., 1975, 52: 222
doi: 10.1016/0021-9797(75)90192-7
21 Lü Y X. Analysis of Cl- corrosion resistance of high Mo super austenitic stainless steels [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 765
21 吕迎玺. 高Mo超级奥氏体不锈钢耐Cl-腐蚀性能分析 [J]. 中国腐蚀与防护学报, 2022, 42: 765
doi: 10.11902/1005.4537.2022.100
[1] 贺志豪, 贾建文, 李阳, 张威, 徐芳泓, 侯利锋, 卫英慧. 超级奥氏体不锈钢在模拟烟气脱硫冷凝液中的钝化行为研究[J]. 中国腐蚀与防护学报, 2023, 43(2): 408-414.
[2] 王育鑫, 吴波, 戴乐阳, 胡科峰, 吴建华, 杨阳, 闫福磊, 张贤慧. 低合金钢在模拟海洋低温环境下的电偶腐蚀研究[J]. 中国腐蚀与防护学报, 2022, 42(6): 894-902.
[3] 梅佳雪, 杜尊峰, 朱海涛. 基于随机腐蚀的船舶结构极限承载力研究[J]. 中国腐蚀与防护学报, 2022, 42(4): 662-668.
[4] 滕琳, 陈旭. 海洋环境中金属电偶腐蚀研究进展[J]. 中国腐蚀与防护学报, 2022, 42(4): 531-539.
[5] 崔中雨, 葛峰, 王昕. 几种苛刻海洋大气环境下的海工材料腐蚀机制[J]. 中国腐蚀与防护学报, 2022, 42(3): 403-409.
[6] 张恒康, 黄峰, 徐云峰, 袁玮, 邱耀, 刘静. FeCrMn1.3NiAlx高熵合金显微组织演变及电化学钝化行为[J]. 中国腐蚀与防护学报, 2022, 42(2): 218-226.
[7] 林朝晖, 明南希, 何川, 郑平, 陈旭. 静水压力对X70钢在海洋环境中腐蚀行为影响研究[J]. 中国腐蚀与防护学报, 2021, 41(3): 307-317.
[8] 刘洋, 吴进怡, 闫小宇, 柴柯. 海洋环境中芽孢杆菌对聚氨酯清漆涂层分解的影响[J]. 中国腐蚀与防护学报, 2021, 41(1): 36-42.
[9] 王玉昆, 刘静, 胡骞, 黄峰. S2-对A710钢在NaCl溶液中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2018, 38(3): 233-240.
[10] 王理,刘春阳,韩振宇,佟文伟. 燃气轮机涡轮零部件及材料热腐蚀行为与评价方法研究[J]. 中国腐蚀与防护学报, 2011, 31(5): 399-403.
[11] 刘薇,王佳. 海洋浪溅区环境对材料腐蚀行为影响的研究进展[J]. 中国腐蚀与防护学报, 2010, 30(6): 504-512.
[12] 王春丽,吴建华,李庆芬.  海洋环境电偶腐蚀研究现状与展望[J]. 中国腐蚀与防护学报, 2010, 30(5): 416-420.
[13] 张晓云 . 环境对高强度铝合金应力腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2007, 27(6): 354-362 .
[14] 刘大扬; 魏开金; 李文军 . 南海榆林海域环境因素对钢局部腐蚀的影响[J]. 中国腐蚀与防护学报, 2003, 23(4): 211-216 .