Please wait a minute...
中国腐蚀与防护学报  2024, Vol. 44 Issue (2): 345-354     CSTR: 32134.14.1005.4537.2023.074      DOI: 10.11902/1005.4537.2023.074
  研究报告 本期目录 | 过刊浏览 |
Desulfovibrio Bizertensis SY-1在阴极极化条件下对X70 管线钢的腐蚀行为研究
裴莹莹1,2, 管方1,3(), 董续成1,2, 张瑞永1, 段继周1(), 侯保荣1
1.中国科学院海洋研究所 海洋环境腐蚀与生物污损重点实验室 青岛 266071
2.中国科学院大学 北京 100049
3.南通中科海洋科学与技术研究发展中心 南通 226333
Effect of Desulfovibrio Bizertensis SY-1 on Corrosive Behavior of Metal Materials Under Cathodic Polarization
PEI Yingying1,2, GUAN Fang1,3(), DONG Xucheng1,2, ZHANG Ruiyong1, DUAN Jizhou1(), HOU Baorong1
1.Key laboratory of Marine Environmental Corrosion and Biofouling, Institute of Oceanology, Chinese Academy of Sciences, Beijing 266071, China
2.University of Chinese Academy of Science, Beijing 100049, China
3.Nantong Zhongke Marine Science and Technology R& D Center, Nantong 226333, China
引用本文:

裴莹莹, 管方, 董续成, 张瑞永, 段继周, 侯保荣. Desulfovibrio Bizertensis SY-1在阴极极化条件下对X70 管线钢的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2024, 44(2): 345-354.
Yingying PEI, Fang GUAN, Xucheng DONG, Ruiyong ZHANG, Jizhou DUAN, Baorong HOU. Effect of Desulfovibrio Bizertensis SY-1 on Corrosive Behavior of Metal Materials Under Cathodic Polarization[J]. Journal of Chinese Society for Corrosion and protection, 2024, 44(2): 345-354.

全文: PDF(17133 KB)   HTML
摘要: 

研究了从浸泡在中国南海的钢铁锈层中分离的腐蚀性硫酸盐还原菌Desulfovibrio bizertensis SY-1在-0.85和-1.05 V vs. SCE阴极极化电位下对X70管线钢腐蚀行为的影响。结果表明,-0.85 V vs. SCE电位尚不能有效抑制Desulfovibrio bizertensis SY-1细胞的生长与附着,同时试片表面也检测到了特征的四方硫铁矿和针铁矿的Raman峰。-1.05 V vs. SCE阴极极化电位能够有效抑制浮游Desulfovibrio bizertensis SY-1细胞的生长和代谢过程,腐蚀产物以磁铁矿为主。失重数据也表明,在-1.05 V vs. SCE电位下试片失重与无菌条件基本一致,且在该电位下最大点蚀坑深度与无极化条件相比减少了75%。该研究为含有Desulfovibrio bizertensis SY-1环境的阴极保护电位选择和微生物与极化电位的相互作用研究提供了参考。

关键词 硫酸盐还原菌阴极极化X70管线钢微生物腐蚀    
Abstract

The effect of sulfate-reducing bacteria (SRB) strain Desulfovibrio bizertensis SY-1, which isolated from rust scales on steels formed in the South China Sea, on the corrosion behavior of X70 pipeline steel was investigated at different polarized potentials of -0.85 and -1.05 V vs. SCE. The results showed that neither of the planktonic cell growth or the attached cells could not be effectively inhibited at the -0.85 V vs. SCE cathodal polarization potential. The Raman analysis showed that the corrosion product of mackinawite and goethite were both detected by this applied polarization potential. Under the applied polarization potential of -1.05 V vs. SCE, the growth and metabolic process of planktonic D. bizertensis SY-1 cells could be effectively inhibited, and the corrosion products were mainly magnetite. The mass loss data also showed that the mass loss of coupons at the polarization potential of -1.05 V vs. SCE was basically the same as that in the sterile condition, and the maximum pitting depth at this potential was reduced by 75% compared with those in non-polarized condition. The results provide a reference for the selection of cathodic protection potential and the study on the interaction between microorganisms and polarization potential in the environment containing D. bizertensis SY-1.

Key wordssulfate-reducing bacteria    cathodic polarization    X70 pipeline steel    microbiologically influenced corrosion
收稿日期: 2023-03-15      32134.14.1005.4537.2023.074
ZTFLH:  TG174.3  
基金资助:国家自然科学基金(42076044);南通市应用基础研究计划项目(JC22022104)
通讯作者: 管方,E-mail:guanfang@qdio.ac.cn,研究方向为微生物腐蚀机理;
段继周,E-mail:duanjz@qdio.ac.cn,研究方向为海洋腐蚀机制与防护技术
Corresponding author: GUAN Fang, E-mail: guanfang@qdio.ac.cn;
DUAN Jizhou, E-mail: duanjz@qdio.ac.cn
作者简介: 裴莹莹,女,1997年生,硕士生
图1  X70钢在SRB培养液中施加不同阴极保护电位的I-t图,浮游细胞计数以及溶液乳酸和醋酸的变化趋势
图2  X70试片在不同电位条件下的SRB培养液中浸泡10 d后的形貌
图3  X70试片在不同电位条件下的SRB培养液中浸泡10 d后表面附着细菌的荧光染色照片
图4  X70试片在无菌和不同电位条件下的SRB培养液中浸泡10 d后的SEM形貌
图5  X70管线钢在OCP、-0.85 V和-1.05 V vs. SCE电位条件下的SRB培养液中浸泡10 d后的透射电镜形貌
图6  X70试片在无菌和不同电位条件下的SRB培养液中浸泡10 d后的Raman测试结果
图7  X70管线钢在无菌和不同阴极电位的SRB培养液中浸泡10 d后的腐蚀失重
图8  X70试片在无菌和不同电位条件下的SRB培养液中浸泡10 d后的最大点蚀坑深度
1 Ma Y, Zhang Y M, Zhang R Y, et al. Microbiologically influenced corrosion of marine steels within the interaction between steel and biofilms: a brief view[J]. Appl. Microbiol. Biotechnol., 2020, 104: 515
doi: 10.1007/s00253-019-10184-8 pmid: 31807887
2 Li Y F, Ning C Y. Latest research progress of marine microbiological corrosion and bio-fouling, and new approaches of marine anti-corrosion and anti-fouling[J]. Bioact. Mater., 2019, 4: 189
doi: 10.1016/j.bioactmat.2019.04.003 pmid: 31192994
3 Chen X, Li S B, Zheng Z S, et al. Microbial corrosion behavior of X70 pipeline steel in an artificial solution for simulation of soil corrosivity at daqing Area[J]. J. Chin. Soc. Corros. Prot., 2020, 40: 175
3 陈 旭, 李帅兵, 郑忠硕 等. X70管线钢在大庆土壤环境中微生物腐蚀行为研究[J]. 中国腐蚀与防护学报, 2020, 40: 175
4 Zhang Y M, Zhai X F, Guan F, et al. Microbiologically influenced corrosion of steel in coastal surface seawater contaminated by crude oil[J]. npj Mater. Degrad., 2022, 6: 35
doi: 10.1038/s41529-022-00242-4
5 Zhang F, Wang H T, Hei Y J, et al. Case analysis of microbial corrosion in product oil pipeline[J]. J. Chin. Soc. Corros. Prot., 2021, 41: 795
5 张 斐, 王海涛, 何勇君 等. 成品油输送管道微生物腐蚀案例分析[J]. 中国腐蚀与防护学报, 2021, 41: 795
6 Procópio L. The role of biofilms in the corrosion of steel in marine environments[J]. World J. Microbiol. Biotechnol., 2019, 35: 73
doi: 10.1007/s11274-019-2647-4
7 Tuck B, Watkin E, Somers A, et al. A critical review of marine biofilms on metallic materials[J]. npj Mater. Degrad., 2022, 6: 25
doi: 10.1038/s41529-022-00234-4
8 Ma G, Gu Y H, Zhao J. Research progress on sulfate-reducing bacteria induced corrosion of steels[J]. J. Chin. Soc. Corros. Prot., 2021, 41: 289
8 马 刚, 顾艳红, 赵 杰. 硫酸盐还原菌对钢材腐蚀行为的研究进展[J]. 中国腐蚀与防护学报, 2021, 41: 289
9 Li Z X, Lv M Y, Du M. Effect of combined potential polarization on corrosion of X65 steel in seawater inoculated with iron oxiding bacteria[J]. J. Chin. Soc. Corros. Prot., 2022, 42: 211
9 李振欣, 吕美英, 杜 敏. 海水环境中组合电位极化对铁氧化菌腐蚀的影响[J]. 中国腐蚀与防护学报, 2022, 42: 211
doi: 10.11902/1005.4537.2021.106
10 Liu B, Fan E D, Jia J H, et al. Corrosion mechanism of nitrate reducing bacteria on X80 steel correlated to its intermediate metabolite nitrite[J]. Constr. Build. Mater., 2021, 303: 124454
doi: 10.1016/j.conbuildmat.2021.124454
11 Dong Y Q, Jiang B T, Xu D K, et al. Severe microbiologically influenced corrosion of S32654 super austenitic stainless steel by acid producing bacterium Acidithiobacillus caldus SM-1[J]. Bioelectrochemistry, 2018, 123: 34
doi: 10.1016/j.bioelechem.2018.04.014
12 Dall’Agnol L T, Moura J J G. Sulphate-reducing bacteria (SRB) and biocorrosion[A]. LiengenT, FéronD, BasséguyR, et al. Understanding Biocorrosion[M]. Oxford: Elsevier, 2014: 77
13 Dinh H T, Kuever J, Mußmann M, et al. Iron corrosion by novel anaerobic microorganisms[J]. Nature, 2004, 427: 829
doi: 10.1038/nature02321
14 Duan J Z, Wu S R, Zhang X J, et al. Corrosion of carbon steel influenced by anaerobic biofilm in natural seawater[J]. Electrochim. Acta, 2008, 54: 22
doi: 10.1016/j.electacta.2008.04.085
15 Yu L, Duan J Z, Du X Q, et al. Accelerated anaerobic corrosion of electroactive sulfate-reducing bacteria by electrochemical impedance spectroscopy and chronoamperometry[J]. Electrochem. Commun., 2013, 26: 101
doi: 10.1016/j.elecom.2012.10.022
16 Yu L, Duan J Z, Zhao W, et al. Characteristics of hydrogen evolution and oxidation catalyzed by Desulfovibrio caledoniensis biofilm on pyrolytic graphite electrode[J]. Electrochim. Acta, 2011, 56: 9041
doi: 10.1016/j.electacta.2011.05.086
17 Li Y C, Xu D K, Chen C F, et al. Anaerobic microbiologically influenced corrosion mechanisms interpreted using bioenergetics and bioelectrochemistry: a review[J]. J. Mater. Sci. Technol., 2018, 34: 1713
doi: 10.1016/j.jmst.2018.02.023
18 Dong X C, Guan F, Xu L T, et al. Progress on the corrosion mechanism of sulfate-reducing bacteria in marine environment on metal materials[J]. J. Chin. Soc. Corros. Prot., 2021, 41: 1
18 董续成, 管 方, 徐利婷 等. 海洋环境硫酸盐还原菌对金属材料腐蚀机理的研究进展[J]. 中国腐蚀与防护学报, 2021, 41: 1
doi: 10.11902/1005.4537.2019.241
19 Guan F, Zhai X F, Duan J Z, et al. Progress on influence of cathodic polarization on sulfate-reducing bacteria induced corrosion[J]. J. Chin. Soc. Corros. Prot., 2018, 38: 1
19 管 方, 翟晓凡, 段继周 等. 阴极极化对硫酸盐还原菌腐蚀影响的研究进展[J]. 中国腐蚀与防护学报, 2018, 38: 1
20 Liduino V, Galvão M, Brasil S, et al. SRB-mediated corrosion of marine submerged AISI 1020 steel under impressed current cathodic protection[J]. Colloids Surf., 2021, 202B: 111701
21 McCully A L, Spormann A M. Direct cathodic electron uptake coupled to sulfate reduction by Desulfovibrio ferrophilus IS5 biofilms[J]. Environ. Microbiol., 2020, 22: 4794
doi: 10.1111/emi.v22.11
22 Lv M Y, Li X, Du M. The effect of cathodic polarization on the corrosion behavior of X65 steel in seawater containing sulfate‐reducing bacteria[J]. Mater. Corros., 2020, 71: 2038
23 Dong X C, Zhai X F, Zhang Y M, et al. Steel rust layers immersed in the south China sea with a highly corrosive Desulfovibrio strain[J]. npj Mater. Degrad., 2022, 6: 91
doi: 10.1038/s41529-022-00304-7
24 Clark M E, He Q, He Z, et al. Temporal transcriptomic analysis as Desulfovibrio vulgaris hildenborough transitions into stationary phase during electron donor depletion[J]. Appl. Environ. Microbiol., 2006, 72: 5578
doi: 10.1128/AEM.00284-06
25 Guan F, Zhai X F, Duan J Z, et al. Influence of sulfate-reducing bacteria on the corrosion behavior of high strength steel EQ70 under cathodic polarization[J]. PLoS One, 2016, 11: e0162315
doi: 10.1371/journal.pone.0162315
26 Jia R, Wang D, Jin P, et al. Effects of ferrous ion concentration on microbiologically influenced corrosion of carbon steel by sulfate reducing bacterium Desulfovibrio vulgaris [J]. Corros. Sci., 2019, 153: 127
doi: 10.1016/j.corsci.2019.03.038
27 Xu L T, Guan F, Ma Y, et al. Inadequate dosing of THPS treatment increases microbially influenced corrosion of pipeline steel by inducing biofilm growth of Desulfovibrio hontreensis SY-21[J]. Bioelectrochemistry, 2022, 145: 108048
doi: 10.1016/j.bioelechem.2021.108048
28 Morcillo M, Chico B, Alcántara J, et al. SEM/micro-Raman characterization of the morphologies of marine atmospheric corrosion products formed on mild steel[J]. J. Electrochem. Soc., 2016, 163: C426
doi: 10.1149/2.0411608jes
29 De Faria D L A, Silva S V, De Oliveira M T. Raman microspectroscopy of some iron oxides and oxyhydroxides[J]. J. Raman Spectrosc., 1997, 28: 873
doi: 10.1002/(ISSN)1097-4555
30 Refait P, Grolleau A M, Jeannin M, et al. Corrosion of carbon steel in marine environments: role of the corrosion product layer[J]. Corros. Mater. Degradat., 2020, 1: 198
31 Bourdoiseau J A, Jeannin M, Sabot R, et al. Characterisation of mackinawite by Raman spectroscopy: effects of crystallisation, drying and oxidation[J]. Corros. Sci., 2008, 50: 3247
doi: 10.1016/j.corsci.2008.08.041
32 Jeong H Y, Lee J H, Hayes K F. Characterization of synthetic nanocrystalline mackinawite: crystal structure, particle size, and specific surface area[J]. Geochim. Cosmochim. Acta, 2008, 72: 493
doi: 10.1016/j.gca.2007.11.008
33 Ohfuji H, Rickard D. High resolution transmission electron microscopic study of synthetic nanocrystalline mackinawite[J]. Earth Planet. Sci. Lett., 2006, 241: 227
doi: 10.1016/j.epsl.2005.10.006
34 Yang J L, Lu Y F, Guo Z H, et al. Corrosion behaviour of a quenched and partitioned medium carbon steel in 3.5 wt.% NaCl solution[J]. Corros. Sci., 2018, 130: 64
doi: 10.1016/j.corsci.2017.10.027
35 Chen Y J, Tang Q, Senko J M, et al. Long-term survival of Desulfovibrio vulgaris on carbon steel and associated pitting corrosion[J]. Corros. Sci., 2015, 90: 89
doi: 10.1016/j.corsci.2014.09.016
36 Wu T Q, Sun C, Xu J, et al. A study on bacteria-assisted cracking of X80 pipeline steel in soil environment[J]. Corros. Eng. Sci. Technol., 2018, 53: 265
doi: 10.1080/1478422X.2018.1456633
37 Gu T Y, Jia R, Unsal T, et al. Toward a better understanding of microbiologically influenced corrosion caused by sulfate reducing bacteria[J]. J. Mater. Sci. Technol., 2019, 35: 631
doi: 10.1016/j.jmst.2018.10.026
[1] 柯楠, 倪莹莹, 何嘉淇, 柳海宪, 金正宇, 刘宏伟. 微生物胞外聚合物引起的金属腐蚀的研究进展[J]. 中国腐蚀与防护学报, 2024, 44(2): 278-294.
[2] 高秋英, 曾文广, 王恒, 刘元聪, 扈俊颖. 流体冲刷作用对SRB的腐蚀行为影响研究[J]. 中国腐蚀与防护学报, 2023, 43(5): 1087-1093.
[3] 吴佳佳, 徐鸣, 王鹏, 张盾. 天然海水中硝酸盐的添加对EH40钢腐蚀的影响[J]. 中国腐蚀与防护学报, 2023, 43(4): 765-772.
[4] 许萍, 赵美惠, 白鹏凯. 循环冷却水中HEDP对铁细菌腐蚀影响及机理研究[J]. 中国腐蚀与防护学报, 2022, 42(6): 988-994.
[5] 马凯军, 王萌萌, 史振龙, 陈长风, 贾小兰. 温度对原油储罐罐底微生物腐蚀影响规律的研究[J]. 中国腐蚀与防护学报, 2022, 42(6): 1051-1057.
[6] 李振欣, 吕美英, 杜敏. 海水环境中组合电位极化对铁氧化菌腐蚀的影响[J]. 中国腐蚀与防护学报, 2022, 42(2): 211-217.
[7] 朱海林, 陆小猛, 李晓芬, 王俊霞, 刘建华, 冯丽, 马雪梅, 胡志勇. 含噻二唑季铵盐表面活性剂的合成及缓蚀杀菌性能研究[J]. 中国腐蚀与防护学报, 2022, 42(1): 51-59.
[8] 刘珺, 耿永娟, 李绍纯, 徐爱玲, 侯东帅, 刘昂, 郎秀璐, 陈旭, 刘国锋. TEOS/IBTS涂层对海洋潮汐区混凝土微生物污损防护效果研究[J]. 中国腐蚀与防护学报, 2022, 42(1): 135-142.
[9] 何勇君, 张天遂, 王海涛, 张斐, 李广芳, 刘宏芳. 微生物腐蚀杀菌剂研究进展[J]. 中国腐蚀与防护学报, 2021, 41(6): 748-756.
[10] 张斐, 王海涛, 何勇君, 张天遂, 刘宏芳. 成品油输送管道微生物腐蚀案例分析[J]. 中国腐蚀与防护学报, 2021, 41(6): 795-803.
[11] 吕美英, 李振欣, 杜敏, 万紫轩. 培养基对微生物腐蚀的影响[J]. 中国腐蚀与防护学报, 2021, 41(6): 757-764.
[12] 李光泉, 李广芳, 王俊强, 张天遂, 张斐, 蒋习民, 刘宏芳. 临海管道微生物腐蚀损伤机制与防护[J]. 中国腐蚀与防护学报, 2021, 41(4): 429-438.
[13] 马刚, 顾艳红, 赵杰. 硫酸盐还原菌对钢材腐蚀行为的研究进展[J]. 中国腐蚀与防护学报, 2021, 41(3): 289-297.
[14] 何静, 杨纯田, 李中. 建筑行业微生物腐蚀与防护研究进展[J]. 中国腐蚀与防护学报, 2021, 41(2): 151-160.
[15] 明男希, 王岐山, 何川, 郑平, 陈旭. 温度对X70钢在含CO2地层水中腐蚀行为影响[J]. 中国腐蚀与防护学报, 2021, 41(2): 233-240.