|
|
临海管道微生物腐蚀损伤机制与防护 |
李光泉1, 李广芳2, 王俊强3, 张天遂2, 张斐2, 蒋习民1, 刘宏芳2( ) |
1.中石化石油工程技术服务有限公司 北京 100020 2.华中科技大学化学与化工学院 能量转换与存储材料化学教育部重点实验室 材料化学与服役实效湖北省重点实验室 武汉 430074 3.中国特种设备检测研究院 北京 100029 |
|
Microbiologically Influenced Corrosion Mechanism and Protection of Offshore Pipelines |
LI Guangquan1, LI Guangfang2, WANG Junqiang3, ZHANG Tiansui2, ZHANG Fei2, JIANG Ximin1, LIU Hongfang2( ) |
1.Sinopec Oilfield Service Corporation (SSC), Beijing 100020, China 2.Hubei Key Laboratory of Material Chemistry and Service Failure, Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China 3.China Special Equipment Inspection and Research Institute (CSEI), Beijing 100029, China |
引用本文:
李光泉, 李广芳, 王俊强, 张天遂, 张斐, 蒋习民, 刘宏芳. 临海管道微生物腐蚀损伤机制与防护[J]. 中国腐蚀与防护学报, 2021, 41(4): 429-438.
Guangquan LI,
Guangfang LI,
Junqiang WANG,
Tiansui ZHANG,
Fei ZHANG,
Ximin JIANG,
Hongfang LIU.
Microbiologically Influenced Corrosion Mechanism and Protection of Offshore Pipelines. Journal of Chinese Society for Corrosion and protection, 2021, 41(4): 429-438.
链接本文:
https://www.jcscp.org/CN/10.11902/1005.4537.2020.133
或
https://www.jcscp.org/CN/Y2021/V41/I4/429
|
1 |
Ma S D, Li W H, Sun H Y, et al. The biological control of ocean corrosion [J]. Total Corros. Control, 2006, 20(3): 5
|
1 |
马士德, 李伟华, 孙虎元等. 海洋腐蚀的生物控制 [J]. 全面腐蚀控制, 2006, 20(3): 5
|
2 |
Edyvean R G J. Biodeterioration problems of North Sea oil and gas production—A review [J]. Int. Biodeterior., 1987, 23: 199
|
3 |
Azis P K A, Al-Tisan I, Sasikumar N. Biofouling potential and environmental factors of seawater at a desalination plant intake [J]. Desalination, 2001, 135: 69
|
4 |
Yan T, Yan W, Dong Y, et al. Marine fouling of offshore installations in the northern Beibu Gulf of China [J]. Int. Biodeterior. Biodegrad., 2006, 58: 99
|
5 |
Heitz E, Flemming H C, Sand W. Microbially Influenced Corrosion of Materials [M]. Berlin: Springer-Verlag, 1996
|
6 |
Ma C, Chen C G, Jiang X B, et al. Distribution characteristics of marine bacteria in the China seas [J]. Med. J. Chin. PLA, 2012, 37: 909
|
6 |
马聪, 陈昌国, 蒋学兵等. 中国海域海洋细菌分布特征分析 [J]. 解放军医学杂志, 2012, 37: 909
|
7 |
Liu H W, Xu D K, Dao A Q, et al. Study of corrosion behavior and mechanism of carbon steel in the presence of Chlorella vulgaris [J]. Corros. Sci., 2015, 101: 84
|
8 |
Duan L N, Liu Q Y, Jia S J, et al. Microstructure characteristics and strength-toughness of X100 pipeline steel [J]. Chin. J. Mater. Res., 2012, 26: 443
|
8 |
段琳娜, 刘清友, 贾书君等. X100级管线钢的组织和强韧性 [J]. 材料研究学报, 2012, 26: 443
|
9 |
Dou W W, Jia R, Jin P, et al. Investigation of the mechanism and characteristics of copper corrosion by sulfate reducing bacteria [J]. Corros. Sci., 2018, 144: 237
|
10 |
Dong S, Bai X Q, Yuan C Q. Analysis of induced corrosion by fouling organisms on offshore platform and its research progress [J]. Mater. Prot., 2018, 51: 116
|
10 |
董硕, 白秀琴, 袁成清. 海洋平台污损生物诱导腐蚀分析及其研究进展 [J]. 材料保护, 2018, 51: 116
|
11 |
Zheng J Y. Influence of marine biofouling on corrosion behaviour [J]. J. Chin. Soc. Corros. Prot., 2010, 30: 171
|
11 |
郑纪勇. 海洋生物污损与材料腐蚀 [J]. 中国腐蚀与防护学报, 2010, 30: 171
|
12 |
Li H B, Zhou E Z, Ren Y B, et al. Investigation of microbiologically influenced corrosion of high nitrogen nickel-free stainless steel by Pseudomonas aeruginosa [J]. Corros. Sci., 2016, 111: 811
|
13 |
Liu F L, Zhang J, Sun C X, et al. The corrosion of two aluminium sacrificial anode alloys in SRB-containing sea mud [J]. Corros. Sci., 2014, 83: 375
|
14 |
Liu F L. Effect of sulphate reducing bacteria on corrosion of Zn, Al sacrificial anode materials in marine sediment [D]. Chongqing: Chongqing University, 2010
|
14 |
刘奉令. 海泥中硫酸盐还原菌对锌、铝牺牲阳极材料的腐蚀影响研究 [D]. 重庆: 重庆大学, 2010
|
15 |
Liu F L, Zhang S T, Zhang J, et al. Effects of SRB on corrosion of pure zinc anode in marine sediment [J]. Chin. J. Mater. Res., 2010, 24: 411
|
15 |
刘奉令, 张胜涛, 张杰等. 海泥中SRB对纯锌阳极腐蚀行为的影响 [J]. 材料研究学报, 2010, 24: 411
|
16 |
Li Y C, Xu D K, Chen C F, et al. Anaerobic microbiologically influenced corrosion mechanisms interpreted using bioenergetics and bioelectrochemistry: A review [J]. J. Mater. Sci. Technol., 2018, 34: 1713
|
17 |
Videla H A, Swords C, Edyvean R G J. Features of SRB-induced corrosion of carbon steel in marine environments [A].
|
17 |
Dean S, Delgadillo G, Bushman J. Marine Corrosion in Tropical Environments [M]. West Conshohocken, PA: ASTM International, 2000: 270
|
18 |
Craig B D, McNeil M B, Little B J. Discussion of “mackinawite formation during microbial corrosion” [J]. Corrosion, 1991, 47: 329
|
19 |
Liu H F, Liu T, Zheng B J, et al. Influence of EPS's activity on 13Cr stainless steel's pitting sensitivity [J]. J. Huazhong Univ. Sci. Techno. (Nat. Sci. Ed.), 2009, 37: 122
|
19 |
刘宏芳, 刘涛, 郑碧娟等. EPS活性对13Cr钢钝化膜点蚀敏感性的影响 [J]. 华中科技大学学报 (自然科学版), 2009, 37: 122
|
20 |
Stadler R, Wei L, Fürbeth W, et al. Influence of bacterial exopolymers on cell adhesion of Desulfovibrio vulgaris on high alloyed steel: Corrosion inhibition by extracellular polymeric substances (EPS) [J]. Mater. Corros., 2010, 61: 1008
|
21 |
Ghafari M D, Bahrami A, Rasooli I, et al. Bacterial exopolymeric inhibition of carbon steel corrosion [J]. Int. Biodeterior. Biodegrad., 2013, 80: 29
|
22 |
Chan K Y, Xu L C, Fang H P. Anaerobic electrochemical corrosion of mild steel in the presence of extracellular polymeric substances produced by a culture enriched in sulfate-reducing bacteria [J]. Environ. Sci. Technol., 2002, 36: 1720
|
23 |
Jin J T, Guan Y T. The mutual co-regulation of extracellular polymeric substances and iron ions in biocorrosion of cast iron pipes [J]. Bioresour. Technol., 2014, 169: 387
|
24 |
Xu D K, Li Y C, Gu T Y. Mechanistic modeling of biocorrosion caused by biofilms of sulfate reducing bacteria and acid producing bacteria [J]. Bioelectrochemistry, 2016, 110: 52
|
25 |
Xu D K, Li Y C, Song F M, et al. Laboratory investigation of microbiologically influenced corrosion of C1018 carbon steel by nitrate reducing bacterium Bacillus licheniformis [J]. Corros. Sci., 2013, 77: 385
|
26 |
Gu T Y, Jia R, Unsal T, et al. Toward a better understanding of microbiologically influenced corrosion caused by sulfate reducing bacteria [J]. J. Mater. Sci. Technol., 2019, 35: 631
|
27 |
Xu D K, Gu T Y. Carbon source starvation triggered more aggressive corrosion against carbon steel by the Desulfovibrio vulgaris biofilm [J]. Int. Biodeterior. Biodegrad., 2014, 91: 74
|
28 |
Zhang P Y, Xu D K, Li Y C, et al. Electron mediators accelerate the microbiologically influenced corrosion of 304 stainless steel by the Desulfovibrio vulgaris biofilm [J]. Bioelectrochemistry, 2015, 101: 14
|
29 |
Gu T Y. New Understandings of biocorrosion mechanisms and their classifications [J]. J. Microb. Biochem. Technol., 2012, 4: 1
|
30 |
Jia R, Tan J L, Jin P, et al. Effects of biogenic H2S on the microbiologically influenced corrosion of C1018 carbon steel by sulfate reducing Desulfovibrio vulgaris biofilm [J]. Corros. Sci., 2018, 130: 1
|
31 |
Chen Y J, Howdyshell R, Howdyshell S, et al. Characterizing pitting corrosion caused by a long-term starving sulfate-reducing bacterium surviving on carbon steel and effects of surface roughness [J]. Corrosion, 2014, 70: 767
|
32 |
Liu H W, Xu D K, Wu Y N, et al. Research progress in corrosion of steels induced by sulfate reducing bacteria [J]. Corros. Sci. Prot. Technol., 2015, 27: 409
|
32 |
刘宏伟, 徐大可, 吴亚楠等. 微生物生物膜下的钢铁材料腐蚀研究进展 [J]. 腐蚀科学与防护技术, 2015, 27: 409
|
33 |
Torres C I, Marcus A K, Lee H S, et al. A kinetic perspective on extracellular electron transfer by anode-respiring bacteria [J]. FEMS Microbiol. Rev., 2010, 34: 3
|
34 |
Reguera G, McCarthy K D, Mehta T, et al. Extracellular electron transfer via microbial nanowires [J]. Nature, 2005, 435: 1098
|
35 |
Liu H W, Gu T Y, Asif M, et al. The corrosion behavior and mechanism of carbon steel induced by extracellular polymeric substances of iron-oxidizing bacteria [J]. Corros. Sci., 2017, 114: 102
|
36 |
Wang H, Ju L K, Castaneda H, et al. Corrosion of carbon steel C1010 in the presence of iron oxidizing bacteria Acidithiobacillus ferrooxidans [J]. Corros. Sci., 2014, 89: 250
|
37 |
Liu H W, Liu H F. Research progress of corrosion of steels induced by iron oxidizing bacteria [J]. J. Chin. Soc. Corros. Prot., 2017, 37: 195
|
37 |
刘宏伟, 刘宏芳. 铁氧化菌引起的钢铁材料腐蚀研究进展 [J]. 中国腐蚀与防护学报, 2017, 37: 195
|
38 |
Liu H W, Gu T Y, Zhang G A, et al. The effect of magneticfield on biomineralization and corrosion behavior of carbon steel induced by iron-oxidizing bacteria [J]. Corros. Sci., 2016, 102: 93
|
39 |
Liu H W, Fu C Y, Gu T Y, et al. Corrosion behavior of carbon steel in the presence of sulfate reducing bacteria and iron oxidizing bacteria cultured in oilfield produced water [J]. Corros. Sci., 2015, 100: 484
|
40 |
Hehemann R F. Stress corrosion cracking of stainless steels [J]. Metall. Trans., 1985, 16A: 1909
|
41 |
Xiong F P, Wang J L, Ahmed A F, et al. Research progress of sulfate-reducing bacteria induced SCC [J]. Corros. Sci. Prot. Technol., 2018, 30: 213
|
41 |
熊福平, 王军磊, Ahmed A F等. 硫酸盐还原菌诱导应力腐蚀开裂研究进展 [J]. 腐蚀科学与防护技术, 2018, 30: 213
|
42 |
Liu Q, Li Z, Liu Z Y, et al. Effects of H2S/HS- on stress corrosion cracking behavior of X100 pipeline steel under simulated sulfate-reducing bacteria metabolite conditions [J]. J. Mater. Eng. Perform., 2017, 26: 2763
|
43 |
Li X, Xie F, Wang D, et al. Effect of residual and external stress on corrosion behaviour of X80 pipeline steel in sulphate-reducing bacteria environment [J]. Eng. Fail. Anal., 2018, 91: 275
|
44 |
Zhou C S, Zheng S Q, Chen C F, et al. The effect of the partial pressure of H2S on the permeation of hydrogen in low carbon pipeline steel [J]. Corros. Sci., 2013, 67: 184
|
45 |
Xie F, Li X, Wang D, et al. Synergistic effect of sulphate-reducing bacteria and external tensile stress on the corrosion behaviour of X80 pipeline steel in neutral soil environment [J]. Eng. Fail. Anal., 2018, 91: 382
|
46 |
Biezma M V. The role of hydrogen in microbiologically influenced corrosion and stress corrosion cracking [J]. Int. J. Hydrogen Energy, 2001, 26: 515
|
47 |
Wu T Q, Xu J, Sun C, et al. Microbiological corrosion of pipeline steel under yield stress in soil environment [J]. Corros. Sci., 2014, 88: 291
|
48 |
Kennell G F, Evitts R W, Heppner K L. A critical crevice solution and IR drop crevice corrosion model [J]. Corros. Sci., 2008, 50: 1716
|
49 |
Laycock N J, Stewart J, Newman R C. The initiation of crevice corrosion in stainless steels [J]. Corros. Sci., 1997, 39: 1791
|
50 |
He T, Jańczewski D, Jana S, et al. Efficient and robust coatings using poly (2-methyl-2-oxazoline) and its copolymers for marine and bacterial fouling prevention [J]. J. Polym. Sci., 2016, 54A: 275
|
51 |
Banerjee I, Pangule R C, Kane R S. Antifouling coatings: recent developments in the design of surfaces that prevent fouling by proteins, bacteria, and marine organisms [J]. Adv. Mater., 2011, 23: 690
|
52 |
Liu J H, Qian S Q. Marine bioadhesion and defenses [J]. Corros. Prot., 2010, 31: 78
|
52 |
刘继华, 钱士强. 海洋生物附着及其防护技术 [J]. 腐蚀与防护, 2010, 31: 78
|
53 |
Selim M S, Shenashen M A, El-Safty S A, et al. Recent progress in marine foul-release polymeric nanocomposite coatings [J]. Prog. Mater. Sci., 2017, 87: 1
|
54 |
Guan F, Zhai X F, Duan J Z, et al. Influence of sulfate-reducing bacteria on the corrosion behavior of 5052 aluminum alloy [J]. Surf. Coat. Technol., 2017, 316: 171
|
55 |
Guan F, Duan J, Zhai X, et al. Interaction between sulfate-reducing bacteria and aluminum alloys-Corrosion mechanisms of 5052 and Al-Zn-In-Cd aluminum alloys [J]. J. Mater. Sci. Technol., 2020, 36: 55
|
56 |
Liao H X, Qi G T, Yu K X. Research on sacrificing anode of high-temperature Al alloy containing rare earth and application [J]. Corros. Prot. Petrochem. Ind., 2004, 21(4): 19
|
56 |
廖海星, 齐公台, 喻克雄. 含稀土高温铝合金牺牲阳极的研究与应用 [J]. 石油化工腐蚀与防护, 2004, 21(4): 19
|
57 |
Sun Y L, Wang N, Zhou Y, et al. Electrochemical performance evaluation of high temperature sacrificial anode under well environment [J]. Hot Work. Technol., 2017, 46(14): 99
|
57 |
孙雨来, 王楠, 周勇等. 油井环境中高温牺牲阳极的电化学性能评价 [J]. 热加工工艺, 2017, 46(14): 99
|
58 |
Guan F, Zhai X F, Duan J Z, et al. Influence of sulfate-reducing bacteria on the corrosion behavior of high strength steel EQ70 under cathodic polarization [J]. PLoS One, 2016, 11: e0162315
|
59 |
Guan F, Zhai X F, Duan J Z, et al. Progress on influence of cathodic polarization on sulfate-reducing bacteria induced corrosion [J]. J. Chin. Soc. Corros. Prot., 2018, 38: 1
|
59 |
管方, 翟晓凡, 段继周等. 阴极极化对硫酸盐还原菌腐蚀影响的研究进展 [J]. 中国腐蚀与防护学报, 2018, 38: 1
|
60 |
Wei Y L, Tian Y Q, Wang Y H, et al. Study on corrosion inhibition of compound corrosion inhibitor of molybdate in seawater [J]. Adv. Mater. Res., 2012, 581/582: 755
|
61 |
Gowri S, Sathiyabama J, Rajendran S. Corrosion inhibition effect of carbon steel in sea water by L-arginine-Zn2+ system [J]. Int. J. Chem. Eng., 2014, 2014: 607209
|
62 |
Kaskah S E, Pfeiffer M, Klock H, et al. Surface protection of low carbon steel with N-acyl sarcosine derivatives as green corrosion inhibitors [J]. Surf. Interfaces, 2017, 9: 70
|
63 |
Ma X M, Qian B, Zhang J, et al. The inhibition effect of polyaspartic acid and its mixed inhibitor on mild steel corrosion in seawater wet/dry cyclic conditions [J]. Int. J. Electrochem. Sci., 2016, 11: 3024
|
64 |
Liu F, Zhang L, Yan X, et al. Effect of diesel on corrosion inhibitors and application of bio-enzyme corrosion inhibitors in the laboratory cooling water system [J]. Corros. Sci., 2015, 93: 293
|
65 |
Wang J L, Hou B S, Xiang J, et al. The performance and mechanism of bifunctional biocide sodium pyrithione against sulfate reducing bacteria in X80 carbon steel corrosion [J]. Corros. Sci., 2019, 150: 296
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|