Please wait a minute...
中国腐蚀与防护学报  2024, Vol. 44 Issue (2): 355-364     CSTR: 32134.14.1005.4537.2023.105      DOI: 10.11902/1005.4537.2023.105
  研究报告 本期目录 | 过刊浏览 |
某燃气轮机燃烧室合金高温蒸汽氧化行为研究
梁志远1(), 张超2, 曲劲宇2, 何建元2, 郭亭山1, 徐一鸣1
1.西安交通大学能源与动力工程学院 西安 710049
2.中国船舶集团有限公司第七〇三研究所 船舶与海洋特种装备和动力系统国家工程研究中心 哈尔滨 150078
Oxidation Behavior in Air-steam Mixed Atmosphere at 1000oC of Four Typical High-temperature Alloys for Gas Turbine
LIANG Zhiyuan1(), ZHANG Chao2, QU Jinyu2, HE Jianyuan2, GUO Tingshan1, XU Yiming1
1.School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an 710049, China
2.National Engineering Research Center for Ship and Marine Special Equipment and Power Systems, No. 703 Research Institute of CSSC, Harbin 150078, China
引用本文:

梁志远, 张超, 曲劲宇, 何建元, 郭亭山, 徐一鸣. 某燃气轮机燃烧室合金高温蒸汽氧化行为研究[J]. 中国腐蚀与防护学报, 2024, 44(2): 355-364.
Zhiyuan LIANG, Chao ZHANG, Jinyu QU, Jianyuan HE, Tingshan GUO, Yiming XU. Oxidation Behavior in Air-steam Mixed Atmosphere at 1000oC of Four Typical High-temperature Alloys for Gas Turbine[J]. Journal of Chinese Society for Corrosion and protection, 2024, 44(2): 355-364.

全文: PDF(19368 KB)   HTML
摘要: 

采用蒸汽氧化实验与热力学理论计算研究了DD5,K447A,GH3230以及GH3536共计4种燃气轮机用典型高温合金在高温蒸汽中的氧化行为。在1000℃下含10%H2O的空气中,合金GH3230和K447A氧化增重遵循抛物线氧化规律,合金DD5和GH3536出现失重情况。合金K447A与GH3230表面形成了Cr2O3和Al2O3为主的氧化产物,其中合金GH3230因Al含量较低而发生内氧化现象。DD5表面发生Al2O3氧化膜剥落,而GH3536出现氧化物挥发。结果表明,4种合金的抗蒸汽氧化性能排序为K447 > GH3230 > DD5 > GH3536。

关键词 高温合金蒸汽氧化燃烧工况燃气轮机    
Abstract

The use of doped hydrogen or pure hydrogen as fuel poses a severe test to the key structural components of gas turbines, especially the resistance of materials to steam oxidation. The high-temperature steam oxidation behavior of 4 typical high temperature alloys, namely DD5, K447A, GH3230 and GH3536 for gas turbine in a mixed flow of air with 10% steam at 1000oC was studied by means of mass change measurement and thermodynamic theoretical calculation. It follows that the GH3230 and K447A alloys showed an oxidation mass gain and followed a parabolic law, while the alloys DD5 and GH3536 showed oxidation mass loss on the contrary. The oxidation products formed on K447A and GH3230 alloy were mainly layered Cr2O3 and Al2O3 scales. The spallation of Al2O3 oxide scales occurred on the surface of DD5 alloy, while oxide volatilization was found on GH3536 alloy. In sum, the steam oxidation resistance of the four alloys may be ranked as following: K447 > GH3230 > DD5 > GH3536.

Key wordssuperalloys    steam oxidation    combustion condition    gas turbine
收稿日期: 2023-04-11      32134.14.1005.4537.2023.105
ZTFLH:  TG174  
基金资助:创新工程(211-XXXX-N106-01-04);自立科技研发专项项目(202206Z);国家科技重大专项(J2019-III-0012-0055)
通讯作者: 梁志远,男,1989年生,博士,副教授,E-mail:liangzy@xjtu.edu.cn,研究方向为能源装备环境行为
Corresponding author: LIANG Zhiyuan, E-mail: liangzy@xjtu.edu.cn
作者简介: 梁志远,男,1989年生,博士,副教授
图1  高温蒸汽氧化实验系统示意图
SuperalloyFeCrNiCBMoAlTiCoWOther element
DD507.0Bal0.0430.0411.56.207.55Hf:0.15;Re:3;Ta:6.5;Y:0.078
K447A08.0Bal0.130.010.55.30.99.09.5Ta:2.8; Hf:1.2; Zr:0.03
GH32300.4122.50Bal0.090.0061.350.330.051.584La:0.006;Cu0.01
GH353618.1621.21Bal0.080.0038.840.160.021.130.54Cu:0.02
表1  4种镍基合金化学成分
图2  4 种合金在1000℃下含水蒸汽的空气中氧化增重曲线结果
图3  4种合金氧化100、200和300 h后的XRD谱
图4  合金DD5氧化100、200和300 h后表面的SEM形貌
PointCrNiTaMoAlReCoWOB
19.0743.402.531.921.453.158.045.070.100.00
22.6013.712.620.1822.820.002.120.6634.350.00
311.3556.574.472.301.663.609.686.630.130.00
47.7515.853.350.5529.830.003.171.0835.180.00
512.0051.742.452.492.504.9910.347.060.000.00
60.171.2331.670.188.830.000.259.8244.180.00
表2  DD5合金经100、200和300 h氧化后表面标记点(见图4)EDS成分分析结果
图5  K447A合金经100、200和300 h氧化后表面SEM形貌
PointCrNiTaMoAlTiCoWOB
11.4659.130.540.010.570.272.610.1927.430.00
25.9520.371.460.1130.370.765.400.0129.210.00
38.4915.5326.150.103.408.004.152.0512.8410.26
42.9978.510.260.000.570.464.500.2211.500.00
518.5627.100.900.076.172.548.570.1931.030.00
61.7030.690.001.080.480.082.3537.395.3719.97
表3  K447A合金经100 h、200 h和300 h氧化后表面标记点(见图5)EDS成分分析
图6  GH3230合金经100、200和300 h氧化后表面SEM形貌
PointCrSiMnMoAlFeCoWOB
120.730.0418.810.000.042.940.020.0421.9927.74
211.530.430.248.460.2917.410.010.823.850.00
323.820.0314.270.000.127.280.140.0926.8613.44
412.530.330.208.680.3117.320.040.871.880.00
531.950.030.370.000.060.150.020.0231.0128.18
611.640.340.189.150.0320.050.000.691.231.42
表4  GH3230合金经100、200和300 h氧化后表面标记点(见图6)EDS成分分析结果
图7  GH3536合金经100 h、200 h和300 h氧化后表面SEM形貌
PointCrSiMnMoAlFeCoWOB
120.730.0418.810.000.042.940.020.0421.9927.74
211.530.430.248.460.2917.410.010.823.850.00
323.820.0314.270.000.127.280.140.0926.8613.44
412.530.330.208.680.3117.320.040.871.880.00
531.950.030.370.000.060.150.020.0231.0128.18
611.640.340.189.150.0320.050.000.691.231.42
表5  GH3536合金经100、200和300 h氧化后表面标记点EDS成分分析结果
图8  DD5合金氧化300 h后断面形貌与EDS元素分布分析
图9  K447A合金氧化300 h后断面形貌与EDS元素分布分析
图10  K447A合金氧化100和300 h后断面形貌与EDS元素分布分析
图11  GH3536合金氧化300 h后断面形貌与EDS元素分布分析

No.

Chemical reaction equation

Gibbs free energy

ΔG/kJ

1Ni + H2O(g) = NiO + H2(g)51.2
2Mn + H2O(g) = MnO + H2(g)-114.1
32Cr + 3H2O(g) = Cr2O3 + 3H2(g)-267.6
4Cr+3/2O2(g)+H2O(g)=CrO2(OH)2(g)-308.2
52Al + 3H2O(g) = Al2O3 + 3H2(g)-739.0
表6  1000℃下主要合金元素与H2O反应的Gibbs自由能改变
No.Chemical reaction equationPO2 / MPa
12Ni+O2 (g)=2NiO4.54 × 10-12
22Mn+O2(g)=2MnO2.49 × 10-23
34/3Cr+O2 (g)=2/3Cr2O31.36 × 10-23
44/3Al+O2 (g)=2/3Al2O31.73 × 10-36
表7  1000℃下主要合金元素氧化反应的平衡氧分压
图12  1000℃下Ni-Cr-Mn/Al-H-O体系的热力学相图
图13  不同合金在1000℃下含H2O的空气中氧化机理示意图
1 Park Y, Choi M, Kim D, et al. Performance analysis of large-scale industrial gas turbine considering stable combustor operation using novel blended fuel[J]. Energy, 2021, 236: 121408
doi: 10.1016/j.energy.2021.121408
2 Funke H H W, Beckmann N, Abanteriba S. An overview on dry low NO x micromix combustor development for hydrogen-rich gas turbine applications[J]. Int. J. Hydrogen Energy, 2019, 44: 6978
doi: 10.1016/j.ijhydene.2019.01.161
3 Stefan E, Talic B, Larring Y, et al. Materials challenges in hydrogen-fuelled gas turbines[J]. Int. Mater. Rev., 2022, 67: 461
doi: 10.1080/09506608.2021.1981706
4 Holladay J D, Hu J, King D L, et al. An overview of hydrogen production technologies[J]. Catal. Today, 2009, 139: 244
doi: 10.1016/j.cattod.2008.08.039
5 Tian S Y, Zhu Z J, Jiang J, et al. Research and development status and the latest technological progress of hydrogen fuel gas turbine research[J]. Energy Res. Manag., 2021, (4): 10
5 田书耘, 朱志劼, 蒋 俊 等. 氢燃料燃气轮机研发现状和最新技术进展[J]. 能源研究与管理, 2021, (4): 10
6 Barelli L, Bidini G, Gallorini F, et al. Hydrogen production through sorption-enhanced steam methane reforming and membrane technology: A review[J]. Energy, 2008, 33: 554
doi: 10.1016/j.energy.2007.10.018
7 Kraev V M, Tikhonov A I, Siluyanova M V. Development of gas turbines for power generation and gas transmission[J]. Russ. Eng. Res., 2020, 40: 759
doi: 10.3103/S1068798X20090075
8 Wee S, Do J, Kim K, et al. Review on mechanical thermal properties of superalloys and thermal barrier coating used in gas turbines[J]. Appl. Sci., 2020, 10: 5476
doi: 10.3390/app10165476
9 Yuan J T, Wu X M, Wang W, et al. Effect of grain size on oxidation of heat-resistant steels in high temperature water steam[J]. J. Chin. Soc. Corros. Prot., 2013, 33: 257
9 袁军涛, 吴细毛, 王 文 等. 晶粒尺寸对耐热钢在高温水蒸汽中的氧化行为的影响[J]. 中国腐蚀与防护学报, 2013, 33: 257
10 Shuai S S, Li S L, Xuan W D, et al. Research progress of materials and key manufacturing technologies of heavy-duty gas turbine blades[J]. Therm. Turbine, 2022, 51: 161
10 帅三三, 李石磊, 玄伟东 等. 重型燃气轮机涡轮叶片材料及制造技术研究进展[J]. 热力透平, 2022, 51: 161
11 Barwinska I, Kopec M, Kukla D, et al. Thermal barrier coatings for high-temperature performance of nickel-based superalloys: A synthetic review[J]. Coatings, 2023, 13: 769
doi: 10.3390/coatings13040769
12 Stefan E, Talic B, Larring Y, et al. Materials challenges in hydrogen-fuelled gas turbines[J]. Int. Mater. Rev., 2022, 67: 461
doi: 10.1080/09506608.2021.1981706
13 Ziaei-Asl A, Ramezanlou M T. Thermo-mechanical behavior of gas turbine blade equipped with cooling ducts and protective coating with different thicknesses[J]. Int. J. Mech. Sci., 2019, 150: 656
doi: 10.1016/j.ijmecsci.2018.10.070
14 Yu C T, Liu H, Zhang J, et al. Gradient thermal cycling behavior of a thermal barrier coating system constituted by NiCoCrAlY bond coat and pure metastable tetragonal nano-4YSZ top coat[J]. Ceram. Int., 2019, 45: 15281
doi: 10.1016/j.ceramint.2019.05.018
15 Saunders S R J, Monteiro M, Rizzo F. The oxidation behaviour of metals and alloys at high temperatures in atmospheres containing water vapour: A review[J]. Prog. Mater. Sci., 2008, 53: 775
doi: 10.1016/j.pmatsci.2007.11.001
16 Meschter P J, Opila E J, Jacobson N S. Water vapor-mediated volatilization of high-temperature materials[J]. Ann. Rev. Mater. Res., 2013, 43: 559
doi: 10.1146/matsci.2013.43.issue-1
17 Liang Z Y, Xu Y M, Wang S, et al. Corrosion behavior of heat-resistant alloys in high temperature CO2 environment[J]. J. Chin. Soc. Corr. Prot., 2022, 42: 613
17 梁志远, 徐一鸣, 王硕 等. 高等级合金CO2环境下的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2022, 42: 613
doi: 10.11902/1005.4537.2021.210
18 Oleksak R P, Tylczak J H, Carney C S, et al. High-temperature oxidation of commercial alloys in supercritical CO2 and related power cycle environments[J]. JOM, 2018, 70: 1527
doi: 10.1007/s11837-018-2952-7
19 Lee H J, Kim S H, Kim H, et al. Corrosion and carburization behavior of Al-rich surface layer on Ni-base alloy in supercritical-carbon dioxide environment[J]. Appl. Surf. Sci., 2016, 388: 483
doi: 10.1016/j.apsusc.2015.11.162
20 Fujikawa H, Murakumo T, Newcomb S, et al. Steam oxidation behaviour of Ni-based single crystalline superalloy for the advanced gas turbine[J]. Defect Diffus. Forum, 2007, 263: 111
doi: 10.4028/www.scientific.net/DDF.263
21 Wright I G, Dooley R B. A review of the oxidation behaviour of structural alloys in steam[J]. Int. Mater. Rev., 2010, 55: 129
doi: 10.1179/095066010X12646898728165
22 Liang Z Y, Zhao Q X. High temperature oxidation of Fe–Ni-base alloy HR120 and Ni-base alloy HAYNES 282 in steam[J]. Mater. High Temp., 2019, 36: 87
doi: 10.1080/09603409.2018.1465712
23 Liang Z Y, Wang Y G, Zhao Q X. Steam oxidation behavior of alloy 617 at 900oC to 1100oC[J]. Metall. Mater. Trans., 2018, 49A: 3133
24 Pint B A, Brese R G, Keiser J R. Effect of pressure on supercritical CO2 compatibility of structural alloys at 750oC[J]. Mater. Corros., 2017, 68: 151
25 Wang L, Liu C Y, Han Z Y, et al. Hot corrosion behavior and evaluation of turbine components and materials used for gas turbine engine[J]. J. Chin. Soc. Corros. Prot., 2011, 31: 399
25 王 理, 刘春阳, 韩振宇 等. 燃气轮机涡轮零部件及材料热腐蚀行为与评价方法研究[J]. 中国腐蚀与防护学报, 2011, 31: 399
[1] 刘姝妤, 耿树江, 王金龙, 王福会, 孙清云, 吴勇, 段海涛, 夏思瑶, 夏春怀. K444合金表面CVD铝化物涂层的高温氧化和固态Na2SO4诱导的空气腐蚀[J]. 中国腐蚀与防护学报, 2023, 43(3): 553-560.
[2] 刘姝妤, 耿树江, 马艺萌, 王金龙, 王福会. K444合金表面CVD渗铝涂层在750 ℃空气中耐NaCl腐蚀行为[J]. 中国腐蚀与防护学报, 2023, 43(2): 321-328.
[3] 杨依凡, 孙文瑶, 陈明辉, 王金龙, 王福会. 镍基单晶高温合金N5及其纳米晶涂层在900 ℃下O2和O2+20%H2O气氛中的氧化行为[J]. 中国腐蚀与防护学报, 2023, 43(1): 55-61.
[4] 解磊鹏, 陈明辉, 王金龙, 王福会. 放电等离子烧结超细晶ODS镍基合金的高温氧化行为研究[J]. 中国腐蚀与防护学报, 2022, 42(5): 709-716.
[5] 程玉贤, 曹超, 蒋成洋, 陈明辉, 王福会. 模拟高温海洋环境中铝化物/搪瓷复合涂层腐蚀行为研究[J]. 中国腐蚀与防护学报, 2022, 42(3): 410-416.
[6] 李烽杰,陈明辉,张哲铭,王硕,王福会. 金属搪瓷高温防护涂层的制备及其抗热震行为研究[J]. 中国腐蚀与防护学报, 2019, 39(5): 411-416.
[7] 马云海. 喷丸处理对Super304H钢抗蒸汽氧化性能的影响[J]. 中国腐蚀与防护学报, 2019, 39(3): 245-252.
[8] 虞礼嘉,梁文萍,林浩,缪强,黄彪子,崔世宇. 激光重熔YSZ热障涂层950 ℃的热腐蚀行为[J]. 中国腐蚀与防护学报, 2019, 39(1): 77-82.
[9] 宋增意, 刘莉, 邓丽, 孙元, 周亦胄. N5镍基单晶高温合金在王水中的电化学溶解行为研究[J]. 中国腐蚀与防护学报, 2018, 38(4): 365-372.
[10] 孙井永,李秋实,郭洪波,宫声凯. Ni-Al涂层与单晶合金互扩散行为及其对界面合金组织稳定性的影响[J]. 中国腐蚀与防护学报, 2016, 36(5): 497-504.
[11] 吴多利, 张洪宇, 韦华, 郑启, 金涛, 孙晓峰. 4种改性的铝化物涂层对DZ38G合金热腐蚀性能的影响[J]. 中国腐蚀与防护学报, 2014, 34(6): 502-506.
[12] 鲁金涛, 谷月峰. 电站锅炉关键部件材料高温蒸汽氧化研究进展[J]. 中国腐蚀与防护学报, 2014, 34(1): 19-26.
[13] 郭永安,李柏松,赖万慧,郭建亭,周兰章. 铸造镍基合金K444在900℃空气中的长期氧化行为[J]. 中国腐蚀与防护学报, 2012, 32(4): 285-290.
[14] 张泽海,孟杰. 一种镍基单晶高温合金的恒温氧化行为[J]. 中国腐蚀与防护学报, 2010, 30(4): 337-340.
[15] 刘杨;王磊;李伟涛;王富强. 电场处理对GH3044合金腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2010, 30(2): 129-134.