Please wait a minute...
中国腐蚀与防护学报  2022, Vol. 42 Issue (5): 833-838    DOI: 10.11902/1005.4537.2021.247
  海洋材料腐蚀与防护专栏 本期目录 | 过刊浏览 |
不同磁场强度下铝镁合金腐蚀行为研究
黄连鹏, 张欣(), 熊伊铭, 陶嘉豪, 王泽华, 周泽华
河海大学力学与材料学院 南京 211100
Corrosion Behavior of Al-3.0Mg-xRE/Fe Alloys Under Magnetic Field of Different Intensities
HUANG Lianpeng, ZHANG Xin(), XIONG Yiming, TAO Jiahao, WANG Zehua, ZHOU Zehua
College of Mechanics and Materials, Hohai University, Nanjing 211100, China
全文: PDF(5413 KB)   HTML
摘要: 

通过扫描电子显微镜 (SEM)、能谱分析仪 (EDS) 和电化学工作站研究了不同磁场强度下铝镁合金的腐蚀行为,探索了磁场强度对不同物相特性铝镁合金腐蚀行为的作用规律。研究结果表明:与普通环境相比,磁场中Al-3.0Mg-xRE/Fe合金的腐蚀电位、点蚀电位均升高,腐蚀电流密度降低,浸泡后点蚀坑数量和尺寸均减少,磁场能够一定程度地降低Al-3.0Mg-xRE/Fe合金的腐蚀和点蚀敏感性及腐蚀速率。随着磁场强度的增高,磁场抑制合金腐蚀的作用增强。

关键词 不同物相特性铝镁合金稀土元素磁场腐蚀行为点蚀    
Abstract

The corrosion behavior of Al-3.0Mg-xRE/Fe alloys in 3.5%NaCl solution in the presence of magnetic field of different intensities was studied by means of electrochemical workstation, and scanning electron microscope (SEM) with energy disperse spectroscopy (EDS). The results indicated that the applied magnetic field could enhance the corrosion potential and pitting corrosion potential, and reduce the corrosion current density of Al-3.0Mg-xRE/Fe alloys. At the same time, the amount and size of the formed pits in the presence of magnetic field were lower than those in the absence of magnetic field. Magnetic field can reduce the corrosion- and pitting-sensitivity, and the corrosion rate of Al-3.0Mg-xRE/Fe alloys. With the increase of magnetic field intensity, the inhibition effect of magnetic field is enhanced.

Key wordsAl-Mg alloy with different electrode potential phases    rare earth elements    magnetic field    corrosion behavior    pitting corrosion
收稿日期: 2021-09-22     
ZTFLH:  TG.174.442  
基金资助:国家自然科学基金(51909071);江苏省自然科学基金(BK20190493);中央高校基本科研业务费专项(B220202040)
通讯作者: 张欣     E-mail: zhangxin.007@163.com
Corresponding author: ZHANG Xin     E-mail: zhangxin.007@163.com
作者简介: 黄连鹏,男,1997年生,硕士生

引用本文:

黄连鹏, 张欣, 熊伊铭, 陶嘉豪, 王泽华, 周泽华. 不同磁场强度下铝镁合金腐蚀行为研究[J]. 中国腐蚀与防护学报, 2022, 42(5): 833-838.
Lianpeng HUANG, Xin ZHANG, Yiming XIONG, Jiahao TAO, Zehua WANG, Zehua ZHOU. Corrosion Behavior of Al-3.0Mg-xRE/Fe Alloys Under Magnetic Field of Different Intensities. Journal of Chinese Society for Corrosion and protection, 2022, 42(5): 833-838.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2021.247      或      https://www.jcscp.org/CN/Y2022/V42/I5/833

图1  电化学试验装置
图2  Al-3.0Mg-xRE/Fe合金表面SEM形貌
PointAlMgFeCeLa
167.711.5130.88------
261.641.66---24.8511.85
374.151.1824.67------
457.351.86---23.8816.91
563.090.9335.98------
666.590.8832.53------
表1  Al-3.0Mg-xRE/Fe合金的EDS分析结果
图3  不同磁场强度下Al-3Mg-xRE/Fe合金在3.5%NaCl溶液中浸泡7 d后表面形貌
图4  Al-3.0Mg-0.2RE/Fe合金在3.5%NaCl溶液中浸泡7 d后的表面形貌
PointAlMgFeCeLaNaCl
156.081.04---------------
232.641.01---24.449.425.281.20
337.651.4919.90------2.66---
表2  Al-3.0Mg-0.2RE/Fe合金在3.5%NaCl溶液中浸泡7 d后的EDS分析结果
图5  不同磁场强度下Al-3Mg-xRE/Fe合金Tafel曲线
AlloyEcorr / VIcorr / μA·cm-2Epit / V
Al-3.0Mg0 T-1.2167.253-0.821
0.2 T-1.1926.928-0.806
0.4 T-1.1866.670-0.799
Al-3.0Mg-0.2RE0 T-1.2436.788-0.793
0.2 T-1.2166.122-0.781
0.4 T-1.1935.815-0.773
Al-3.0Mg-1.0RE0 T-1.2619.130-0.836
0.2 T-1.2368.999-0.833
0.4 T-1.2188.759-0.839
Al-3.0Mg-0.2Fe0 T-1.24010.301-0.841
0.2 T-1.2298.998-0.824
0.4 T-1.2147.586-0.819
Al-3.0Mg-1.0Fe0 T-1.0738.408-0.805
0.2 T-1.0346.987-0.791
0.4 T-1.0176.170-0.783
表3  不同磁场强度下Al-3Mg-xRE/Fe合金的Ecorr、Icorr与Epit
1 Cho C H, Son H W, Lee J C, et al. Effect of high Mg content and processing parameters on Portevin-Le Chatelier and negative strain rate sensitivity effects in Al-Mg alloys [J]. Mater. Sci. Eng., 2020, 779A: 139151
2 Wang H, Geng H W, Zhou D S, et al. Multiple strengthening mechanisms in high strength ultrafine-grained Al-Mg alloys [J]. Mater. Sci. Eng., 2020, 771A: 138613
3 Zhang D, Zhang Z, Pan Y L, et al. Current-driving intergranular corrosion performance regeneration below the precipitates solvus temperature in Al-Mg alloy [J]. J. Mater. Sci. Technol., 2020, 53: 132
doi: 10.1016/j.jmst.2020.01.071
4 Beura V K, Kale C, Srinivasan S, et al. Corrosion behavior of a dynamically deformed Al-Mg alloy [J]. Electrochim. Acta, 2020, 354: 136695
doi: 10.1016/j.electacta.2020.136695
5 Wei M H, Liu H P. Research progress of corrosion resistant aluminum alloys for ship applications [J]. Light Alloy Fabricat. Technol., 2006, 34(12): 6
5 魏梅红, 刘徽平. 船舶用耐蚀铝合金的研究进展 [J]. 轻合金加工技术, 2006, 34(12): 6
6 Hinds G, Coey J M D, Lyons M E G. Influence of magnetic forces on electrochemical mass transport [J]. Electrochem. Commun., 2001, 3: 215
doi: 10.1016/S1388-2481(01)00136-9
7 Aaboubi O, Chopart J P, Douglade J, et al. Magnetic field effects on mass transport [J]. J. Electrochem. Soc., 1990, 137: 1796
doi: 10.1149/1.2086807
8 Zhang P, Zhu Q, Su Q, et al. Corrosion behavior of T2 copper in 3.5% sodium chloride solution treated by rotating electromagnetic field [J]. Trans. Nonferrous Met. Soc. China, 2016, 26: 1439
doi: 10.1016/S1003-6326(16)64249-8
9 Hu J, Dong C F, Li X G, et al. Effects of applied magnetic field on corrosion of beryllium copper in NaCl solution [J]. J. Mater. Sci. Technol., 2010, 26: 355
doi: 10.1016/S1005-0302(10)60058-8
10 Chiba A, Ogawa T. Influence of magnetic field on the dissolution of copper, zinc and brass in flowing nitric acid solution [J]. Corros. Eng., 1989, 38: 523
doi: 10.3323/jcorr1974.38.10_523
11 Devos O, Aaboubi O, Chopart J P, et al. EIS investigation of zinc electrodeposition in basic media at low mass transfer rates induced by a magnetic field [J]. J. Phys. Chem., 1999, 103B: 496
12 Sueptitz R, Koza J, Uhlemann M, et al. Magnetic field effect on the anodic behavior of a ferromagnetic electrode in acidic solution [J]. Electrochim. Acta, 2009, 54: 2229
doi: 10.1016/j.electacta.2008.10.055
13 Espina-Hernández J H, Caleyo F, Venegas V, et al. Pitting corrosion in low carbon steel influenced by remanent magnetization [J]. Corros. Sci., 2011, 53: 3100
doi: 10.1016/j.corsci.2011.05.044
14 Zhang X, Wang Z H, Zhou Z H, et al. Effects of magnetic field and rare earth addition on corrosion behavior of Al-3.0wt%Mg alloy [J]. J. Alloy. Compd., 2017, 698: 241
doi: 10.1016/j.jallcom.2016.12.184
15 Zhang X, Wang Z H, Zhou Z H, et al. Corrosion behavior of Al-3.0wt%Mg alloy in NaCl solution under magnetic field [J]. Rare Met., 2017, 36: 627
doi: 10.1007/s12598-016-0785-5
16 Zhang X, Wang Z H, Zhou Z H, et al. Impact of magnetic field on corrosion performance of Al-Mg alloy with different electrode potential phases [J]. Intermetallics, 2021, 129: 107037
doi: 10.1016/j.intermet.2020.107037
17 Li X J, Zhang M, Yuan B Y, et al. Effects of the magnetic field on the corrosion dissolution of the 304 SS|FeCl3 system [J]. Electrochim. Acta, 2016, 222: 619
doi: 10.1016/j.electacta.2016.11.017
18 Lu Z P, Huang C B, Huang D L, et al. Effects of a magnetic field on the anodic dissolution, passivation and transpassivation behaviour of iron in weakly alkaline solutions with or without halides [J]. Corros. Sci., 2006, 48: 3049
doi: 10.1016/j.corsci.2005.11.014
19 Lu Z P, Yang W. In situ monitoring the effects of a magnetic field on the open-circuit corrosion states of iron in acidic and neutral solutions [J]. Corros. Sci., 2008, 50: 510
doi: 10.1016/j.corsci.2007.07.009
20 Sueptitz R, Tschulik K, Uhlemann M, et al. Impact of magnetic field gradients on the free corrosion of iron [J]. Electrochim. Acta, 2010, 55: 5200
doi: 10.1016/j.electacta.2010.04.039
21 Zhang X, Wang Z H, Zhou Z H, et al. Effects of cerium and lanthanum on the corrosion behavior of Al-3.0wt.%Mg alloy [J]. J. Mater. Eng. Perform., 2016, 25: 1122
doi: 10.1007/s11665-016-1948-0
22 Zhang X, Wang Z H, Zhou Z H, et al. Influence of rare earth (Ce and La) addition on the performance of Al-3.0wt%Mg alloy [J]. J. Wuhan Univ. Technol.-Mater. Sci. Ed., 2017, 32: 611
23 Li S H. Effect of Ce、Y on mechanical properties and corrosion resistance of AZ91D magnesium alloy [D]. Huhhot: Inner Mongolia University of Technology, 2007
23 李仕慧. Ce、Y对AZ91D镁合金力学性能及耐蚀性的影响 [D]. 呼和浩特: 内蒙古工业大学, 2007
24 Codaro E N, Nakazato R Z, Horovistiz A L, et al. An image processing method for morphology characterization and pitting corrosion evaluation [J]. Mater. Sci. Eng., 2002, 334A: 298
25 Foley P, Nguyen N. The chemical nature of aluminum corrosion: V. energy transfer in aluminum dissolution [J]. J. Electrochem. Soc., 1982, 129: 464
doi: 10.1149/1.2123881
26 Waskaas M, Kharkats Y I. Effect of magnetic fields on convection in solutions containing paramagnetic ions [J]. J. Electroanal. Chem., 2001, 502: 51
doi: 10.1016/S0022-0728(00)00528-3
[1] 万晔, 宋芳龄, 李立军. 基于海洋大气环境因素影响下的碳钢腐蚀特征研究[J]. 中国腐蚀与防护学报, 2022, 42(5): 851-855.
[2] 郭娜, 毛晓敏, 惠芯蕊, 郭章伟, 刘涛. 海洋假交替单胞菌Pseudoalteromonas lipolytica分泌黑色素加速316L不锈钢腐蚀机理的研究[J]. 中国腐蚀与防护学报, 2022, 42(5): 743-751.
[3] 梁志远, 徐一鸣, 王硕, 李玉峰, 赵钦新. 高等级合金CO2环境下的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2022, 42(4): 613-620.
[4] 陈昊, 樊志彬, 陈志坚, 周学杰, 郑鹏华, 吴军. Cl-与HSO3-对建筑用439不锈钢腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2022, 42(3): 493-500.
[5] 杨永, 张庆保, 朱万成, 罗艳龙. 磁场对NaCl溶液中X52管线钢腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2022, 42(3): 501-506.
[6] 张克乾, 张华, 李扬, 洪业, 贺诚. 焦耳陶瓷电熔炉中电极材料腐蚀问题的研究现状[J]. 中国腐蚀与防护学报, 2022, 42(3): 458-463.
[7] 赵宝珠, 朱敏, 袁永锋, 郭绍义, 尹思敏. CoCrFeMnNi高熵合金和管线钢在碱性土壤环境中的耐蚀性对比研究[J]. 中国腐蚀与防护学报, 2022, 42(3): 425-434.
[8] 辛叶春, 徐伟, 赵东杨, 张波. 超细层片结构Al-4%Cu合金的点蚀行为[J]. 中国腐蚀与防护学报, 2022, 42(2): 274-280.
[9] 张建, 黄金, 许家鹏, 罗国强, 沈强. 金属Mo在500 ℃ LiF-LiCl-LiBr-Li熔盐中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2022, 42(1): 67-72.
[10] 程琪栋, 王燕华. 表面划痕对304不锈钢液滴腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2022, 42(1): 99-105.
[11] 张文丽, 张振龙, 吴兆亮, 韩思柯, 崔中雨. 温度对316L不锈钢在油田污水中点蚀行为的影响研究[J]. 中国腐蚀与防护学报, 2022, 42(1): 143-148.
[12] 李鸿瑾, 王歧山, 廖子涵, 孙祥锐, 孙晖, 张新阳, 陈旭. X70钢及其焊缝在含Cl-高pH值溶液中电化学噪声行为研究[J]. 中国腐蚀与防护学报, 2022, 42(1): 60-66.
[13] 雷哲缘, 汪毅聪, 胡骞, 黄峰, 刘静. 组织配分对2002双相不锈钢点蚀萌生及扩展的影响[J]. 中国腐蚀与防护学报, 2021, 41(6): 837-842.
[14] 安易强, 王昕, 崔中雨. 硝酸钝化对304不锈钢在模拟混凝土孔隙液中点蚀的临界Cl-浓度的影响[J]. 中国腐蚀与防护学报, 2021, 41(6): 804-810.
[15] 房豪杰, 曲华, 杨黎晖, 曾庆亚, 王丽丹, 袁宁, 侯保荣, 曹立新, 袁迅道. 9C系列粉末冶金高耐蚀铝合金腐蚀行为研究[J]. 中国腐蚀与防护学报, 2021, 41(6): 775-785.