Please wait a minute...
中国腐蚀与防护学报  2022, Vol. 42 Issue (5): 805-812    DOI: 10.11902/1005.4537.2021.250
  海洋材料腐蚀与防护专栏 本期目录 | 过刊浏览 |
无取向电工钢用磷酸盐系绝缘环保涂层的研制及性能研究
胡雄鑫1, 张弦1(), 刘静1, 吴开明1(), 林安2
1.武汉科技大学 耐火材料与冶金省部共建国家重点实验室 高性能钢铁材料及其应用省部共建协同创新中心 冶金工业过程系统科学湖北省重点实验室 武汉 430081
2.武汉大学资源与环境科学学院 武汉 430072
Development and Performance of Phosphate-based Protective Insulation Coating for Non-oriented Electrical Steel
HU Xiongxin1, ZHANG Xian1(), LIU Jing1, WU Kaiming1(), LIN An2
1.Hubei Province Key Laboratory of Systems Science in Metallurgical Process, Collaborative Innovation Center for Advanced Steels, The State Key Laboratory of Refractory Material and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, China
2.School of Resource and Environmental Science, Wuhan University, Wuhan 430072, China
全文: PDF(10243 KB)   HTML
摘要: 

以磷酸盐为基础成膜剂,添加稀土钝化剂与硅烷偶联剂,研制了一种无取向电工钢用绝缘环保涂料,对添加不同助剂的涂层的显微形貌、电化学性能、成分组成和盐雾性能进行了表征和测试。结果表明,在成膜剂中添加稀土钝化剂可有效填补涂层中的孔洞,进一步添加硅烷偶联剂可分散稀土盐沉淀,使复合涂层表面更均匀且无明显缺陷。电化学测试结果显示复合涂层的腐蚀电流密度最小,极化电阻值最大,结合盐雾测试结果表明其具有出色的耐腐蚀性能。此外,复合涂层的层间电阻、附着力及铅笔硬度等性能均优于工业标准。

关键词 电工钢磷酸盐涂层稀土硅烷耐腐蚀性能    
Abstract

A protective insulation coating for non-oriented electrical steel plate was developed with phosphate-based film forming agent, rare earth passivator and silane coupling agent as raw material. The microstructure, composition, electrochemical performance and resistance to salt spray testing of the coatings with different additives were characterized and assessed. The results show that adding rare earth passivator to the film forming agent can effectively fill the pores on the surface of coating. While the addition of silane coupling agent may be beneficial to the dispersive distribution the rare earth salt precipitates, thereby, resulting in a more uniform surface without obvious defects of the composite coating. The electrochemical test results show that the composite coating presents lower corrosion current density and larger polarization resistance. Taking the salt spray test results into consideration, it is evident that the composite coating has excellent corrosion resistance. In addition, the properties of the composite coating, such as interlayer resistance, adhesion, and pencil hardness are all higher than the requirements of the relevant industrial standards.

Key wordselectrical steel    phosphate coating    rare earth    silane    corrosion resistance
收稿日期: 2021-09-22     
ZTFLH:  TG174  
基金资助:国家自然科学基金(51601138);国家自然科学基金(51601137)
通讯作者: 张弦,吴开明     E-mail: xianzhang@wust.edu.cn;wukaiming@wust.edu.cn
Corresponding author: ZHANG Xian,WU Kaiming     E-mail: xianzhang@wust.edu.cn;wukaiming@wust.edu.cn
作者简介: 胡雄鑫,男,1995年生,硕士生

引用本文:

胡雄鑫, 张弦, 刘静, 吴开明, 林安. 无取向电工钢用磷酸盐系绝缘环保涂层的研制及性能研究[J]. 中国腐蚀与防护学报, 2022, 42(5): 805-812.
Xiongxin HU, Xian ZHANG, Jing LIU, Kaiming WU, An LIN. Development and Performance of Phosphate-based Protective Insulation Coating for Non-oriented Electrical Steel. Journal of Chinese Society for Corrosion and protection, 2022, 42(5): 805-812.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2021.250      或      https://www.jcscp.org/CN/Y2022/V42/I5/805

图1  4种涂层样品的SEM表面形貌图
图2  涂层样品的截面形貌与能谱图
图3  4种涂层样品的拉曼光谱
图4  4种涂层样品的XPS图谱
图5  4种涂层样品和裸钢的动电位极化曲线图
Samplei / μA·cm-2E / V
Bare NOES10.200-0.378
A3.890-0.316
B0.877-0.307
C0.715-0.301
D0.205-0.307
表1  4种涂层样品和裸钢的腐蚀电流密度与腐蚀电位
图6  4种涂层样品的电化学阻抗谱
图7  拟合电化学阻抗谱的等效电路图
图8  4种涂层样品的拟合Rp值随时间变化图
图9  4种涂层样品和裸钢在8 h中性盐雾实验后的腐蚀形貌
Experimental standardEvaluation standard

Industrial

standard

D sample
Inter-layer resistance (dry film) (Ω mm2/0.5 μm)GB/T 2522-2017 Methods of test for the determination of coating insulation resistance and coating adhesion of electrical strip and sheetGB/T 2522-20177001500

Corrosion resistance

(Neutral salty-spray) (h)

GB/T 10125-2012 Corrosion tests in artificial atmospheres-Salt spray testsGB/T 6461-2002 Methods for corrosion testing of metallic and other inorganic coatings on mtallic substrates-Rating of test speciments and manufactured articles subjected to corrosion tests68
Adhesion strengthGB/T 2522-2017 Methods of test for the determination of coating insulation resistance and coating adhesion of electrical strip and sheetGB/T 2522-2017AA
Pencil hardness (H)GB/T 6739-2006 Paints and varnishes-Determination of film hardness by pencil testGB/T 6739-200669
表2  D样品的综合性能测试
1 Zhang Y X, Lan M F, Wang Y, et al. Microstructure and texture evolution of thin-gauge non-oriented silicon steel with high permeability produced by twin-roll strip casting [J]. Mater. Charact., 2019, 150: 118
doi: 10.1016/j.matchar.2019.02.001
2 Chen D M, Wang G D, Liu H T. The significance of hot rolled microstructure controlled by fine-tuning Al content to texture evolution and magnetic properties of low silicon non-oriented electrical steels [J]. J. Magn. Magn. Mater., 2021, 528: 167740
doi: 10.1016/j.jmmm.2021.167740
3 Lindenmo M, Coombs A, Snell D. Advantages, properties and types of coatings on non-oriented electrical steels [J]. J. Magn. Magn. Mater., 2000, 215/216: 79
4 Lin A, Zhang X, Fang D J, et al. Study of an environment-friendly insulating coating with high corrosion resistance on electrical steel [J]. Anti-Corros. Methods Mater., 2010, 57: 297
doi: 10.1108/00035591011087154
5 Sui L X, Yin C F, Li X C, et al. Preparation of a modified phosphate-based adhesive and its hot bonding performance on 316L stainless steel [J]. Ceram. Int., 2021, 47: 15585
doi: 10.1016/j.ceramint.2021.02.128
6 Liu F J, Yang M, Han B, et al. Development of T-ZnOw@Al2O3-incorporated low-temperature curing aluminium phosphate coating on Ti-6Al-4V alloy [J]. Ceram. Int., 2019, 45: 18406
doi: 10.1016/j.ceramint.2019.06.056
7 Chen C, Feng B, Hu S J, et al. Control of aluminum phosphate coating on mullite fibers by surface modification with polyethylenimine [J]. Ceram. Int., 2018, 44: 216
doi: 10.1016/j.ceramint.2017.09.161
8 Wagh A S, Jeong S Y. Chemically bonded phosphate ceramics: I, A dissolution model of formation [J]. J. Am. Ceram. Soc., 2003, 86: 1838
doi: 10.1111/j.1151-2916.2003.tb03569.x
9 Zhang Y, Gu H Z, Yang S, et al. Improved magnetic properties of grain-oriented silicon steel by in-situ formation of potassium zirconium phosphate in insulating coating [J]. J. Magn. Magn. Mater., 2020, 506: 166802
doi: 10.1016/j.jmmm.2020.166802
10 Hong L Y, Han H J, Ha H, et al. Development of Cr-free aluminum phosphate binders and their composite applications [J]. Compos. Sci. Technol., 2007, 67: 1195
doi: 10.1016/j.compscitech.2006.05.025
11 Chen D C, He L P, Shang S P. Study on aluminum phosphate binder and related Al2O3-SiC ceramic coating [J]. Mater. Sci. Eng., 2003, 348A: 29
12 Colonetti E, Kammer E H, De Noni Junior A. Chemically-bonded phosphate ceramics obtained from aluminum anodizing waste for use as coatings [J]. Ceram. Int., 2014, 40: 14431
doi: 10.1016/j.ceramint.2014.06.039
13 Arkles B. Tailoring surfaces with silanes [J]. Chemtech, 1977, 7: 766
14 Anyanwu J T, Wang Y R, Yang R T. Influence of water on amine loading for ordered mesoporous silica [J]. Chem. Eng. Sci., 2021, 241: 116717
doi: 10.1016/j.ces.2021.116717
15 Tiringer U, van Dam J P B, Abrahami S T, et al. Scrutinizing the importance of surface chemistry versus surface roughness for aluminium / sol-gel film adhesion [J]. Surf. Interface, 2021, 26: 101417
16 Hinton B R W, Wilson L. The corrosion inhibition of zinc with cerous chloride [J]. Corros. Sci., 1989, 29: 967
doi: 10.1016/0010-938X(89)90087-5
17 Hinton B R W, Arnott D R, Ryan N E. Cerium conversion coatings for the corrosion protection of aluminum [J]. Mater. Forum, 1986, 9: 162
18 Chen L A, Lu Y S, Lin Y T, et al. Preparation and characterization of cerium-based conversion coating on a Fe50Mn30Co10Cr10 dual-phase high-entropy alloy [J]. Appl. Surf. Sci., 2021, 562: 150200
doi: 10.1016/j.apsusc.2021.150200
19 Priyadarshini B, Ramya S, Shinyjoy E, et al. Structural, morphological and biological evaluations of cerium incorporated hydroxyapatite sol-gel coatings on Ti-6Al-4V for orthopaedic applications [J]. J. Mater. Res. Technol., 2021, 12: 1319
doi: 10.1016/j.jmrt.2021.03.009
20 Tschauner O. High-pressure minerals [J]. Am. Mineral., 2019, 104: 1701
doi: 10.2138/am-2019-6594
21 Kato T, Tsunazawa Y, Liu W Y, et al. Structural change analysis of cerianite in weathered residual rare earth ore by mechanochemical reduction using X-ray absorption fine structure [J]. Minerals, 2019, 9: 267
doi: 10.3390/min9050267
22 Colomban P. Review Raman studies of inorganic gels and of their sol-to-gel, gel-to-glass and glass-to-ceramics transformation [J]. J. Raman Specrosc., 1996, 27: 747
doi: 10.1002/(SICI)1097-4555(199610)27:10<747::AID-JRS38>3.0.CO;2-E
23 Riegel B, Blittersdorf S, Kiefer W, et al. Kinetic investigations of hydrolysis and condensation of the glycidoxypropyltrimethoxysilane/aminopropyltriethoxy-silane system by means of FT-Raman spectroscopy I [J]. J. Non-Cryst. Solids, 1998, 226: 76
doi: 10.1016/S0022-3093(97)00487-0
24 Stoch P, Stoch A, Ciecinska M, et al. Structure of phosphate and iron-phosphate glasses by DFT calculations and FTIR/Raman spectroscopy [J]. J. Non-Cryst. Solids, 2016, 450: 48
doi: 10.1016/j.jnoncrysol.2016.07.027
25 Premila M, Rajaraman R, Abhaya S, et al. Atmospheric corrosion of boron doped iron phosphate glass studied by Raman spectroscopy [J]. J. Non-Cryst. Solids, 2020, 530: 119748
doi: 10.1016/j.jnoncrysol.2019.119748
26 Karabulut M, Popa A, Berghian-Grosan C, et al. On the structural features of iron-phosphate glasses by Raman and EPR: observation of superparamagnetic behavior differences in HfO2 or CeO2 containing glasses [J]. J. Mol. Struct., 2019, 1191: 59
doi: 10.1016/j.molstruc.2019.04.086
[1] 陈小涵, 周金赫, 胡吉明. 丙二醇对四甲氧基硅烷水解缩聚行为的影响[J]. 中国腐蚀与防护学报, 2022, 42(5): 717-723.
[2] 黄连鹏, 张欣, 熊伊铭, 陶嘉豪, 王泽华, 周泽华. 不同磁场强度下铝镁合金腐蚀行为研究[J]. 中国腐蚀与防护学报, 2022, 42(5): 833-838.
[3] 于帅先, 吴亚军, 武海生, 吴量, 麻彦龙, 邓盛卫, 孙立东. 钛酸酯改性硅烷涂层优化及其对5056铝箔耐蚀性能的影响[J]. 中国腐蚀与防护学报, 2022, 42(3): 378-386.
[4] 邵银华, 王金龙, 张伟, 张甲, 李玲, 杜汐然, 陈明辉, 朱圣龙, 王福会. 耐热镁合金Mg-14Gd-2.3Zn-Zr的高温氧化行为研究[J]. 中国腐蚀与防护学报, 2022, 42(1): 73-78.
[5] 张赪栋, 刘斌, 石泽耀, 刘岩, 曹青敏, 蹇冬辉. 镍铝青铜合金海水腐蚀行为研究进展[J]. 中国腐蚀与防护学报, 2022, 42(1): 25-33.
[6] 刘珺, 耿永娟, 李绍纯, 徐爱玲, 侯东帅, 刘昂, 郎秀璐, 陈旭, 刘国锋. TEOS/IBTS涂层对海洋潮汐区混凝土微生物污损防护效果研究[J]. 中国腐蚀与防护学报, 2022, 42(1): 135-142.
[7] 丁玉康, 陈国美, 倪自丰, 刘雅玄, 钱善华, 卞达, 赵永武. 六方氮化硼改性硅烷膜耐蚀性能研究[J]. 中国腐蚀与防护学报, 2021, 41(6): 864-870.
[8] 张欣, 林木烟, 杨光恒, 王泽华, 邵佳, 周泽华. Er对海工5052铝合金腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2021, 41(5): 686-690.
[9] 王彭生, 李传夫, 倪静姁. 硅烷保护混凝土结构耐久性提升分析与寿命计算[J]. 中国腐蚀与防护学报, 2021, 41(5): 712-716.
[10] 冯彦朋, 张弦, 吴开明, 杨淼. 热处理工艺对超细贝氏体钢显微组织及耐腐蚀性能的影响[J]. 中国腐蚀与防护学报, 2021, 41(5): 602-608.
[11] 王晓鸽, 高克玮, 颜鲁春, 杨会生, 庞晓露. Ce对镁合金表面ZnAlCe-LDHs薄膜耐腐蚀性能的影响机理研究[J]. 中国腐蚀与防护学报, 2021, 41(3): 335-340.
[12] 史昆玉, 吴伟进, 张毅, 万毅, 于传浩. TC4表面沉积Nb涂层在模拟体液环境下的电化学性能研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 71-79.
[13] 韩月桐, 张鹏超, 史杰夫, 李婷, 孙俊才. 质子交换膜燃料电池中TA1双极板的表面改性研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 125-130.
[14] 王英君, 刘洪雷, 王国军, 董凯辉, 宋影伟, 倪丁瑞. 新型高强稀土Al-Zn-Mg-Cu-Sc铝合金的阳极氧化及其抗腐蚀性能研究[J]. 中国腐蚀与防护学报, 2020, 40(2): 131-138.
[15] 师超,邵亚薇,熊义,刘光明,俞跃龙,杨志广,许传钦. 硅烷偶联剂改性磷酸锌对环氧涂层防腐性能的影响[J]. 中国腐蚀与防护学报, 2020, 40(1): 38-44.