Please wait a minute...
中国腐蚀与防护学报  2020, Vol. 40 Issue (2): 131-138    DOI: 10.11902/1005.4537.2020.005
  研究报告 本期目录 | 过刊浏览 |
新型高强稀土Al-Zn-Mg-Cu-Sc铝合金的阳极氧化及其抗腐蚀性能研究
王英君1, 刘洪雷1, 王国军1, 董凯辉2, 宋影伟2(), 倪丁瑞2
1 东北轻合金有限责任公司 哈尔滨 150060
2 中国科学院金属研究所 沈阳 110016
Investigation of Anodic Film on a Novel RE-containing Al-Alloy Al-Zn-Mg-Cu-Sc
WANG Yingjun1, LIU Honglei1, WANG Guojun1, DONG Kaihui2, SONG Yingwei2(), NI Dingrui2
1 Northeast Light Alloy CO. , LTD, Harbin 150060, China
2 Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
全文: PDF(3432 KB)   HTML
摘要: 

针对添加稀土Sc的新型高强7000系铝合金中析出相的特征,发展了相应的阳极氧化工艺,并通过封孔后处理进一步提高膜层的致密性。结果表明,在7000系稀土铝合金表面存在的含Sc析出相作为微阴极,加速其周围Al基体的溶解,影响成膜均匀性。通过调整氧化溶液组成及电参数,在铝合金表面获得了均匀的阳极氧化膜。同时对比了氟锆酸盐、铈盐及沸水3种封孔工艺对阳极氧化膜耐蚀性的影响,结果显示沸水封孔后的阳极氧化膜呈银白色,膜层均匀致密,无缺陷和微裂纹存在,耐蚀性最佳,该膜层盐雾测试336 h未发生腐蚀,可以满足实际工业应用的要求。

关键词 稀土铝合金析出相阳极氧化封孔处理耐蚀性    
Abstract

A novel anodic process was developed for a RE-containing 7000 series Al-alloy Al-Zn-Mg-Cu-Sc. Further, sealing-pore post treatments were carried out to improve the compactness of the anodic film. The results indicate that the precipitated Sc-containing phases on the surface of 7000 series Al-alloy act as micocathodes to accelerate the corrosion of Al matrix, which has a negative effect on the uniformity of the anodic film. In order to solve this trouble, the formula and electric parameters of the electrolyte bath were adjusted, hence, a uniform and smooth anodic film is formed on the surface of the Al-alloy. Meantime, three sealing-pore processes with fluozirconate, cerate and boiling water respectively were carried out to improve the compactness of the anodic film. It is found that after boiling water sealing-pore, the anodic film exhibits a sliver like uniform surface without defects and microcracks, among others, that film presents the best corrosion resistance, and the film can keep intact after salt spray test for 336 h, which can satisfy the requirement for the actual applications.

Key wordsRE aluminum alloy    precipitation phase    anodic film    sealing-pore treatment    corrosion    resistance
收稿日期: 2020-01-09     
ZTFLH:  TG174  
基金资助:国家重点研发计划(2016YFB0301105)
通讯作者: 宋影伟     E-mail: ywsong@imr.ac.cn
Corresponding author: SONG Yingwei     E-mail: ywsong@imr.ac.cn
作者简介: 王英君,男,1980年生,硕士,高级工程师

引用本文:

王英君, 刘洪雷, 王国军, 董凯辉, 宋影伟, 倪丁瑞. 新型高强稀土Al-Zn-Mg-Cu-Sc铝合金的阳极氧化及其抗腐蚀性能研究[J]. 中国腐蚀与防护学报, 2020, 40(2): 131-138.
Yingjun WANG, Honglei LIU, Guojun WANG, Kaihui DONG, Yingwei SONG, Dingrui NI. Investigation of Anodic Film on a Novel RE-containing Al-Alloy Al-Zn-Mg-Cu-Sc. Journal of Chinese Society for Corrosion and protection, 2020, 40(2): 131-138.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2020.005      或      https://www.jcscp.org/CN/Y2020/V40/I2/131

图1  7000系稀土铝合金SEM背散射微观形貌
图2  7000系铝合金碱蚀后表面形貌
图3  各工艺参数对阳极氧化膜阻抗值的影响
图4  7000系铝合金阳极氧化前后在3.5%NaCl溶液中的阻抗谱对比
图5  铝合金基体表面形貌及铝合金基体和阳极氧化膜在3.5%NaCl溶液中浸泡20 h的表面形貌
图6  经3种封孔方法处理后的铝合金阳极氧化膜在3.5%NaCl溶液中的阻抗谱对比
图7  阻抗谱的等效电路图
Sealing-pore methodRs / Ω·cm2Qp / Ω-1·cm-2·s-nnpRp / kΩ·cm2Qb / Ω-1·cm-2·s-nnbRb / kΩ·cm2
Boiling water25.31.78×10-70.7617.31.08×10-60.948190
Fluozirconate32.71.34×10-70.793.13.42×10-60.83217.9
Cerate28.81.41×10-70.782.25.74×10-60.811106
表1  阻抗谱的拟合结果
图8  沸水封孔后铝合金阳极氧化膜的表面和截面形貌
图9  铝合金基体、未封孔及沸水封孔阳极氧化膜在3.5% NaCl溶液中的极化曲线对比
SampleEcorr / VSCEIcorr / μA·cm-2
Al substrate-0.8710.62
Anodic film-0.719.96×10-2
Sealed-pore anodic film-0.611.09×10-3
表2  极化曲线的拟合结果
图10  阳极氧化膜及其经沸水封孔、再经盐雾腐蚀336 h后的宏观形貌
[1] Wang J, Huang S, Huang H J, et al. Effect of micro-groove on microstructure and performance of MAO ceramic coating fabricated on the surface of aluminum alloy [J]. J. Alloy. Compd., 2019, 777: 94
[2] Leng L, Zhang Z J, Duan Q Q, et al. Improving the fatigue strength of 7075 alloy through aging [J]. Mater. Sci. Eng., 2018, A738: 24
[3] Reda Y, Abdel-Karim R, Elmahallawi I. Improvements in mechanical and stress corrosion cracking properties in Al-alloy 7075 via retrogression and reaging [J]. Mater. Sci. Eng., 2008, A485: 468
[4] Yang Q X, Ren S S, Zhao Q Q, et al. Surface grafting modification and wetting behavior of anodic aluminum oxide film [J]. Surf. Technol., 2017, 46(5): 184
[4] (杨清香, 任爽爽, 赵倩倩, 等. 阳极氧化铝膜的表面接枝改性及润湿行为 [J]. 表面技术, 2017, 46(5): 184)
[5] Shih H H, Tzou S L. Study of anodic oxidation of aluminum in mixed acid using a pulsed current [J]. Surf. Coat. Technol., 2000, 124: 278
[6] Zhang J S, Zhao X H, Zuo Y, et al. The bonding strength and corrosion resistance of aluminum alloy by anodizing treatment in a phosphoric acid modified boric acid/sulfuric acid bath [J]. Surf. Coat. Technol., 2008, 202: 3149
[7] Dai Y F, Shen S T, Lu J Q, et al. 2024 aluminum alloy anodic oxidation in mixed acid [J]. Surf. Technol., 2018, 47(1): 198
[7] (戴一帆, 沈士泰, 卢洁琴等. 2024铝合金混合酸阳极氧化 [J]. 表面技术, 2018, 47(1): 198)
[8] Deng Y, Yin Z M, Zhao K, et al. Effects of Sc and Zr microalloying additions and aging time at 120 ℃ on the corrosion behaviour of an Al-Zn-Mg alloy [J]. Corros. Sci., 2012, 65: 288
[9] Rokhlin L L, Dobatkina T V, Bochvar N R, et al. Investigation of phase equilibria in alloys of the Al-Zn-Mg-Cu-Zr-Sc system [J]. J. Alloy. Compd., 2004, 367: 10
[10] Zou X L, Yan H, Chen X H. Evolution of second phases and mechanical properties of 7075 Al alloy processed by solution heat treatment [J]. Trans. Nonferrous Met. Soc. China, 2017, 27: 2146
[11] Zhu Z F. Surface Treatment of Aluminum [M]. Changsha: Central South University Press, 2010
[11] (朱祖芳. 铝材表面处理 [M]. 长沙: 中南大学出版社, 2010)
[12] Liu D Q, Ke L M, Xu W P, et al. Intergranular corrosion behavior of friction-stir welding joint for 20 mm thick plate of 7075 Al-alloy [J]. J. Chin. Soc. Corros. Prot., 2017, 37(3): 293
[12] (刘德强, 柯黎明, 徐卫平等. 7075厚板铝合金搅拌摩擦焊接头晶间腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2017, 37(3): 293)
[13] Zhang R F, Li J F, Li Q, et al. Analysing the degree of sensitisation in 5xxx series aluminium alloys using artificial neural networks: A tool for alloy design [J]. Corros. Sci., 2019, 150: 268
[14] Zhu R Z. Corrosion of Metals [M]. Beijing: Metallurgical Industry Press, 1989
[14] (朱日彰. 金属腐蚀学 [M]. 北京: 冶金工业出版社, 1989)
[15] Song Y W, Shan D Y, Han E-H. Pitting corrosion of a rare earth Mg alloy GW93 [J]. J. Mater. Sci. Technol., 2017, 33: 954
[16] Zhuang J J, Song R G, Xiang N, et al. Corrosion behavior of micro-arc oxidation coatings formed on 6063 aluminum alloy [J]. Corros. Sci. Prot. Technol., 2017, 29: 492
[16] (庄俊杰, 宋仁国, 项南等. 6063铝合金微弧氧化膜层的腐蚀行为研究 [J]. 腐蚀科学与防护技术, 2017, 29: 492)
[17] Tian L P, Zuo Y, Zhao J M, et al. Evaluation of sealing methods on corrosion behavior of LD7 aluminum alloy anodic oxide films in NaCl solution [J]. J. Chin. Soc. Corros. Prot., 2005, 25: 327
[17] (田连朋, 左禹, 赵景茂等. LD7铝合金阳极氧化膜的不同封闭方法耐蚀性评价 [J]. 中国腐蚀与防护学报, 2005, 25: 327)
[1] 黄鹏, 高荣杰, 刘文斌, 尹续保. 盐溶液刻蚀-氟化处理制备X65管线钢镀镍超双疏表面及其耐蚀性研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 96-100.
[2] 包任, 周根树, 李宏伟. 恒电位脉冲电沉积高锡青铜耐蚀镀层工艺研究[J]. 中国腐蚀与防护学报, 2020, 40(6): 585-591.
[3] 刘海霞, 黄峰, 袁玮, 胡骞, 刘静. 690 MPa级高强贝氏体钢在模拟乡村大气中的腐蚀行为[J]. 中国腐蚀与防护学报, 2020, 40(5): 416-424.
[4] 李聪玮, 杜双明, 曾志琳, 刘二勇, 王飞虎, 马付良. 电流密度对Ni-Co-B镀层微观结构及磨蚀性能的影响[J]. 中国腐蚀与防护学报, 2020, 40(5): 439-447.
[5] 曹京宜, 方志刚, 陈晋辉, 陈志雄, 殷文昌, 杨延格, 张伟. 5083铝合金表面单致密微弧氧化膜的制备及其性能研究[J]. 中国腐蚀与防护学报, 2020, 40(3): 251-258.
[6] 王乐,易丹青,刘会群,蒋龙,冯春. Ru对Ti-6Al-4V合金腐蚀行为的影响及机理研究[J]. 中国腐蚀与防护学报, 2020, 40(1): 25-30.
[7] 武栋才,韩培德. 中温时效处理对SAF2304双相不锈钢耐蚀性的影响[J]. 中国腐蚀与防护学报, 2020, 40(1): 51-56.
[8] 肖金涛,陈妍,邢明秀,鞠鹏飞,孟引根,王芳. 工艺参数对2195铝锂合金阳极氧化膜的耐蚀性影响[J]. 中国腐蚀与防护学报, 2019, 39(5): 431-438.
[9] 孙晓光,韩晓辉,张星爽,张志毅,李刚卿,董超芳. 超低碳奥氏体不锈钢焊接接头耐腐蚀性及环保型化学钝化工艺研究[J]. 中国腐蚀与防护学报, 2019, 39(4): 345-352.
[10] 夏俊捷,牛红志,刘敏,曹华珍,郑国渠,伍廉奎. 基于卤素效应的阳极氧化技术提高Ti48Al5Nb合金抗高温氧化性能[J]. 中国腐蚀与防护学报, 2019, 39(2): 96-105.
[11] 程多云,赵晋斌,刘波,姜城,付小倩,程学群. 高镍钢和传统耐候钢在马尔代夫严酷海洋大气环境中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2019, 39(1): 29-35.
[12] 刘辉,邱玮,冷滨,俞国军. 304和316H不锈钢在LiF-NaF-KF熔盐中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2019, 39(1): 51-58.
[13] 陈高红,胡远森,于美,刘建华,李国爱. 硫酸阳极化对2E12铝合金力学性能的影响[J]. 中国腐蚀与防护学报, 2018, 38(6): 579-586.
[14] 蓝秀玲,刘光明,周街胜,刘志雷,彭叔森,李茂东. 有机硅/SiO2杂化溶胶改性丙烯酸树脂及性能研究[J]. 中国腐蚀与防护学报, 2018, 38(6): 601-606.
[15] 王志虎, 张菊梅, 白力静, 张国君. AZ91镁合金表面微弧氧化与化学镀铜复合处理层的微观组织与性能[J]. 中国腐蚀与防护学报, 2018, 38(4): 391-396.