Please wait a minute...
中国腐蚀与防护学报  2022, Vol. 42 Issue (3): 501-506    DOI: 10.11902/1005.4537.2021.117
  研究报告 本期目录 | 过刊浏览 |
磁场对NaCl溶液中X52管线钢腐蚀行为的影响
杨永1(), 张庆保1, 朱万成2, 罗艳龙1
1.中国特种设备检测研究院 北京 100029
2.中国石油塔里木油田公司英买油气开发部 库尔勒 841000
Effect of Magnetic Field on Corrosion Behavior of X52 Pipeline Steel in NaCl Solution
YANG Yong1(), ZHANG Qingbao1, ZHU Wancheng2, LUO Yanlong1
1.China Special Equipment Inspection and Research Institute, Beijing 100029, China
2.Yingmai Oil and Gas Development Department, Petro China Tarim Oilfield Company, Korla 841000, China
全文: PDF(8296 KB)   HTML
摘要: 

采用开路电位、极化曲线、电化学阻抗谱及腐蚀形貌观察等技术,研究了不同磁场强度 (0、0.9、1.9及2.8 kA/m) 对3.5%NaCl溶液中X52管线钢腐蚀行为的影响。结果表明:磁场使腐蚀电位负移、腐蚀电流密度增大、电荷转移阻抗减小,并一定程度上改变腐蚀形貌;磁场强度越大,对电化学腐蚀行为的影响越大。机理分析表明,磁场对电化学反应过程的影响由电极表面磁感应强度、磁感应梯度以及电解质中离子磁性、浓度等多因素综合决定;Lorentz力加速Fe2+扩散、减小双电层厚度及Kelvins力对Cl-作用而增加电极界面氧含量等腐蚀促进作用大于Kelvins力使Fe2+在电极表面聚集的腐蚀抑制作用,从而整体上促进了电化学腐蚀。

关键词 磁场磁感应强度3.5%NaCl溶液腐蚀行为    
Abstract

Magnetic flux leakage internal inspection is the main method for detecting metal damage in oil and gas pipelines. After the magnetic flux leakage testing is implemented, there will exist a residual magnetic field in the pipeline for a long time. The influence of such residual magnetic field on the corrosion behavior of the pipeline steel is not completely clear yet. Therefore, the influence of different magnetic field intensities (0.9, 1.9 and 2.8 kA/m respectively) on the corrosion behavior of X52 pipeline steel in 3.5%NaCl solution was investigated by means of open circuit potential, polarization curves, electrochemical impedance spectroscopy and corrosion morphology observation techniques. The results indicated that the presence of magnetic field can shift negatively the corrosion potential, increased the corrosion current density, reduced the charge transfer resistance, and changed the corrosion morphology to a certain extent. The greater the magnetic field intensity, the greater the influence on the electrochemical corrosion behavior. Through mechanism analysis, it follows that the influence of magnetic field on the electrochemical reaction process may comprehensively be determined by multiple factors such as the magnetic flux intensity near the electrode surface, the magnetic field gradient, the ion-magnetism and -concentration in the electrolyte. The Loren magnetic force can accelerate the diffusion of Fe2+ and reduce the thickness of the electric double layer, while the Kelvin force can increase the oxygen content of the electrode interface, all the above factors could promote the corrosion process, the effect of which may be stronger than the corrosion inhibition effect induced by that the Kelvin force causing Fe2+ to accumulate on the electrode surface, so that the electrochemical corrosion process was generally promoted.

Key wordsmagnetic field    magnetic flux intensity    3.5%NaCl solution    corrosion behavior
收稿日期: 2021-05-24     
ZTFLH:  TG174  
基金资助:市场监管总局科技计划项目(2019MK136);中国特检院科研项目 (2019青年03)
通讯作者: 杨永     E-mail: 39530354@qq.com
Corresponding author: YANG Yong     E-mail: 39530354@qq.com
作者简介: 杨永,男,1979年生,博士,高级工程师

引用本文:

杨永, 张庆保, 朱万成, 罗艳龙. 磁场对NaCl溶液中X52管线钢腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2022, 42(3): 501-506.
Yong YANG, Qingbao ZHANG, Wancheng ZHU, Yanlong LUO. Effect of Magnetic Field on Corrosion Behavior of X52 Pipeline Steel in NaCl Solution. Journal of Chinese Society for Corrosion and protection, 2022, 42(3): 501-506.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2021.117      或      https://www.jcscp.org/CN/Y2022/V42/I3/501

图1  不同的磁场强度对X52管线钢腐蚀电位影响
图2  不同磁场强度下的恒电位及动电位极化曲线
图3  不同磁场强度下的EIS Nyquist和Bode图及等效电路
H / kA/mRs / Ω·cm2Ydl / S·sn·cm-2ndlRt / Ω·cm2
09.41.55×10-30.69301182
0.911.01.74×10-30.7316827
1.99.12.11×10-30.7507562
2.89.52.19×10-30.7793369
表1  不同磁场强度下NaCl溶液中试样EIS等效电路拟合结果
图4  不同磁场强度下X52管线钢在3.5%NaCl溶液中浸泡10 d的腐蚀形貌
图5  试样表面磁感应强度分布示意图
1 Nie Z W, Huang J, Yu Y Z, et al. Construction progress and existing problems of intelligent pipeline network [J]. Oil Gas Storage Transp., 2020, 39: 16
1 聂中文, 黄晶, 于永志等. 智慧管网建设进展及存在问题 [J]. 油气储运, 2020, 39: 16
2 Feng S, Ma X Y, Lei Y, et al. Ultrasonic echo detection technology for coating defects on submarine pipeline [J]. Oil Gas Storage Transp., 2020, 39: 354
2 冯胜, 马晓阳, 雷毅等. 海底管道外涂层缺陷超声回波检测技术 [J]. 油气储运, 2020, 39: 354
3 Yang L J, Geng H, Gao S W. Magnetic flux leakage internal detection technology of the long distance oil pipeline [J]. Chin. J. Sci. Instrum., 2016, 37: 1736
3 杨理践, 耿浩, 高松巍. 长输油气管道漏磁内检测技术 [J]. 仪器仪表学报, 2016, 37: 1736
4 Jackson J E, Lasseigne-Jackson A N, Sanchez F J, et al. The influence of magnetization on corrosion in pipeline steels [A]. 2006 International Pipeline Conference [C]. Alberta, 2006: 921
5 Wang C, Chen J M. The effect of strong magnetic field on corrosion behavior of iron [J]. J. Chin. Soc. Corros. Prot., 1994, 14: 123
5 王晨, 陈俊明. 磁场对铁腐蚀过程中阴极析氢和阳极溶解的影响 [J]. 中国腐蚀与防护学报, 1994, 14: 123
6 Lv Z P, Chen J M. Effect of magnetic field and Cl- on anodic polarization behavior of iron in neutral 0.5 mol/L Na2SO4 solution [J]. J. Chin. Soc. Corros. Prot., 1997, 17: 25
6 吕战鹏, 陈俊明. 磁场和Cl-对铁在中性Na2SO4溶液中阳极极化行为的影响 [J]. 中国腐蚀与防护学报, 1997, 17: 25
7 Lv Z P, Huang D L, Yang W. Magnetic field induced variation of open circuit state of iron in chloride solutions [J]. Corros. Prot., 2002, 23: 185
7 吕战鹏, 黄德伦, 杨武. 磁场作用下铁在盐酸和氯化钠溶液中自腐蚀状态的变化 [J]. 腐蚀与防护, 2002, 23: 185
8 Cai S W, Ning F, Tang Y J, et al. Effect of magnetic field on anodic dissolution of iron in sodium perchlorate solution at different potentials [J]. Corros. Prot., 2020, 41(8): 1
8 蔡爽巍, 宁飞, 唐元杰等. 磁场对铁在不同电位高氯酸钠溶液中阳极溶解的影响 [J]. 腐蚀与防护, 2020, 41(8): 1
9 Yu X, Zhu X N, Li X J, et al. Effects of magnetic fieldon electrochemical behavior of AZ31B in NaCl solution [J]. Mod. Salt Chem. Ind., 2019, 46(3): 8
9 俞翔, 朱鑫楠, 李希娇等. 磁场对AZ31B在NaCl溶液中电化学行为的影响 [J]. 现代盐化工, 2019, 46(3): 8
10 Liu R Z. Effect of magnetic field on corrosion [J]. Plat. Finish., 1985, (6): 8
10 刘仁志. 磁场对腐蚀的影响 [J]. 电镀与精饰, 1985, (6): 8
11 Lv Z P, Shoji T, Yang W. Anomalous surface morphology of iron generated after anodic dissolution under magnetic fields [J]. Corros. Sci., 2010, 52: 2680
12 Lv Z P, Huang D L, Yang W, et al. Effects of an applied magnetic field on the dissolution and passivation of iron in sulphuric acid [J]. Corros. Sci., 2003, 45: 2233
13 Ghabashy M A. Effect of magnetic field on the rate of steel corrosion in aqueous solutions [J]. Anti-Corros. Methods Mater., 1988, 35: 12
14 Zhang K N, Wu M, Xie F, et al. Effect of magnetic field on corrosion of X80 pipeline steel in meadow soil at Shenyang area [J]. J. Chin. Soc. Corros. Prot., 2017, 37: 148
14 张康南, 吴明, 谢飞等. 磁场对X80管线钢在沈阳草甸土中腐蚀行为的影响 [J]. 中国腐蚀与防护学报, 2017, 37: 148
15 Hui H J, Dai Q S, Chen K, et al. Effect of magnetic field on corrosion of X60 pipeline steel in soil of Changsha area [J]. Corros. Prot., 2019, 40: 474
15 惠海军, 戴乾生, 陈凯等. 磁场对X60钢材料在长沙地区土壤中腐蚀行为的影响 [J]. 腐蚀与防护, 2019, 40: 474
16 Espina-Hernández J H, Caleyo F, Venegas V, et al. Pitting corrosion in low carbon steel influenced by remanent magnetization [J]. Corros. Sci., 2011, 53: 3100
17 Wei X Y, Masoumeh M, Yang L J, et al. Influence of magnetic field on corrosion of pure Cu in artificial seawater with multispecies aerobic bacteria [J]. J. Chin. Soc. Corros. Prot., 2019, 39: 484
17 卫晓阳, Masoumeh M, 杨丽景等. 磁场对纯Cu微生物腐蚀行为的影响 [J]. 中国腐蚀与防护学报, 2019, 39: 484
18 Sueptitz R, Tschulik K, Uhlemann M, et al. Effect of high gradient magnetic fields on the anodic behaviour and localized corrosion of iron in sulphuric acid solutions [J]. Corros. Sci., 2011, 53: 3222
19 Lv Z P, Huang C B, Huang D L, et al. Effects of a magnetic field on the anodic dissolution, passivation and transpassivation behaviour of iron in weakly alkaline solutions with or without halides [J]. Corros. Sci., 2006, 48: 3049
20 Aaboubi O, Chopart J P, Douglade J, et al. Magnetic field effects on mass transport [J]. J. Electrochem. Soc., 1990, 137: 1796
21 Hinds G, Coey J M D, Lyons M E G. Influence of magnetic forces on electrochemical mass transport [J]. Electrochem. Commun., 2001, 3: 215
22 Sueptitz R, Tschulik K, Uhlemann M, et al. Magnetic field effects on the active dissolution of iron [J]. Electrochim. Acta, 2011, 56: 5866
23 Sueptitz R, Koza J, Uhlemann M, et al. Magnetic field effect on the anodic behaviour of a ferromagnetic electrode in acidic solutions [J]. Electrochim. Acta, 2009, 54: 2229
24 Wang X P, Zhao J J, Hu Y P, et al. Effects of the Lorentz force and the gradient magnetic force on the anodic dissolution of nickel in HNO3+NaCl solution [J]. Electrochim. Acta, 2014, 117: 113
25 Lioubashevski O, Katz E, Willner I. Effects of magnetic field Directedorthogonally to surfaces on electrochemical processes [J]. J. Phys. Chem., 2007, 111C: 6024
26 Li X J, Zhang M, Yuan B Y, et al. Effects of the magnetic field on the corrosion dissolution of the 304 SS│FeCl3 system [J]. Electrochim. Acta, 2016, 222: 619
27 Grossinger R, Keplinger F, Mehmood N, et al. Magnetic and microstructural investigations of pipeline steels [J]. IEEE Trans. Magn., 2008, 44: 3277
28 Devos O, Aaboubi O, Chopart J P, et al. Is there a magnetic field effect on electrochemical kinetics? [J]. J. Phys. Chem., 2000, 104A: 1544
29 Grant K M, Hemmert J W, White H S. Magnetic field-controlled microfluidic transport [J]. J. Am. Chem. Soc., 2002, 124: 462
30 Monzon L M A, Coey J M D. Magnetic fields in electrochemistry: the Lorentz force. A mini-review [J]. Electrochem. Commun., 2014, 42: 38
31 Monzon L M A, Coey J M D. Magnetic fields in electrochemistry: the Kelvin force. A mini-review [J]. Electrochem. Commun., 2014, 42: 42
32 Kamesui G, Nishikawa K, Matsushima H, et al. In situ observation of Cu2+ concentration profile during Cu dissolution in magnetic field [J]. J. Electrochem. Soc., 2021, 168: 031507
33 Wu M, Zong Y, Xie F, et al. Effect of chloridion concentration on corrosion behavior of Q235 and X70 pipeline steel in simulated seawater [J]. Heat Treat. Met., 2017, 42(2): 62
33 吴明, 宗月, 谢飞等. 模拟海水中Cl-浓度对Q235和X70管线钢腐蚀行为的影响 [J]. 金属热处理, 2017, 42(2): 62
[1] 张克乾, 张华, 李扬, 洪业, 贺诚. 焦耳陶瓷电熔炉中电极材料腐蚀问题的研究现状[J]. 中国腐蚀与防护学报, 2022, 42(3): 458-463.
[2] 张建, 黄金, 许家鹏, 罗国强, 沈强. 金属Mo在500 ℃ LiF-LiCl-LiBr-Li熔盐中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2022, 42(1): 67-72.
[3] 房豪杰, 曲华, 杨黎晖, 曾庆亚, 王丽丹, 袁宁, 侯保荣, 曹立新, 袁迅道. 9C系列粉末冶金高耐蚀铝合金腐蚀行为研究[J]. 中国腐蚀与防护学报, 2021, 41(6): 775-785.
[4] 刘泉兵, 刘宗德, 郭胜洋, 肖毅. 5083铝合金与30CrMnSiA钢在不同Cl-浓度中电偶腐蚀行为的研究[J]. 中国腐蚀与防护学报, 2021, 41(6): 883-891.
[5] 杨光恒, 周泽华, 张欣, 吴林涛, 梅婉. 磁场作用下不同Mg含量Al-Mg合金腐蚀行为研究[J]. 中国腐蚀与防护学报, 2021, 41(5): 633-638.
[6] 张欣, 林木烟, 杨光恒, 王泽华, 邵佳, 周泽华. Er对海工5052铝合金腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2021, 41(5): 686-690.
[7] 乔忠立, 王玲, 史艳华, 杨众魁. 14Cr1MoR钢焊接接头组织及耐蚀性能[J]. 中国腐蚀与防护学报, 2021, 41(3): 400-404.
[8] 黄涛, 许春香, 杨丽景, 李福霞, 贾庆功, 宽军, 张正卫, 武晓峰, 王中琪. Zr含量对Mg-3Zn-1Y合金显微组织和腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2021, 41(2): 219-225.
[9] 李琳, 陈义庆, 高鹏, 艾芳芳, 钟彬, 伞宏宇, 杨颖. 除冰盐环境下桥梁钢的耐腐蚀性能研究[J]. 中国腐蚀与防护学报, 2020, 40(5): 448-454.
[10] 张欣, 杨光恒, 王泽华, 曹静, 邵佳, 周泽华. 冷拉拔变形过程中含稀土铝镁合金腐蚀行为研究[J]. 中国腐蚀与防护学报, 2020, 40(5): 432-438.
[11] 胡露露, 赵旭阳, 刘盼, 吴芳芳, 张鉴清, 冷文华, 曹发和. 交流电场与液膜厚度对A6082-T6铝合金腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2020, 40(4): 342-350.
[12] 王新华, 杨永, 陈迎春, 位凯玲. 交流电流对X100管线钢在库尔勒土壤模拟液中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2020, 40(3): 259-265.
[13] 胡玉婷, 董鹏飞, 蒋立, 肖葵, 董超芳, 吴俊升, 李晓刚. 海洋大气环境下TC4钛合金与316L不锈钢铆接件腐蚀行为研究[J]. 中国腐蚀与防护学报, 2020, 40(2): 167-174.
[14] 张尧, 郭晨, 刘妍慧, 郝美娟, 成世明, 程伟丽. 挤压态Mg-2Sn-1Al-1Zn合金在模拟体液中的电化学腐蚀行为[J]. 中国腐蚀与防护学报, 2020, 40(2): 146-150.
[15] 苏小红,胡会娥,孔小东. W颗粒/Zr41.2Ti13.8Cu12.5Ni10Be22.5基非晶复合材料在3%NaCl溶液中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2020, 40(1): 70-74.