Please wait a minute...
中国腐蚀与防护学报  2020, Vol. 40 Issue (2): 146-150    DOI: 10.11902/1005.4537.2019.226
  研究报告 本期目录 | 过刊浏览 |
挤压态Mg-2Sn-1Al-1Zn合金在模拟体液中的电化学腐蚀行为
张尧1, 郭晨1, 刘妍慧1, 郝美娟1, 成世明1, 程伟丽1,2()
1 太原理工大学材料科学与工程学院 太原 030024
2 太原理工大学 山西省先进镁基材料重点实验室 太原 030024
Electrochemical Corrosion Behavior of Extruded Dilute Mg-2Sn-1Al-1Zn Alloy in Simulated Body Fluid
ZHANG Yao1, GUO Chen1, LIU Yanhui1, HAO Meijuan1, CHENG Shiming1, CHENG Weili1,2()
1 School of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China
2 Shanxi Key Laboratory of Advanced Magnesium-Based Materials, Taiyuan University of Technology, Taiyuan 030024, China
全文: PDF(1777 KB)   HTML
摘要: 

通过对挤压态Mg-2Sn-1Al-1Zn合金进行电化学测量 (稳定开路电位、极化曲线、阻抗) 以及浸泡在模拟人体体液 (SBF) 不同时间后的阻抗测试,研究其在模拟体液中的电化学腐蚀行为。结果表明:挤压态Mg-2Sn-1Al-1Zn合金的稳态开路电位值 (OCP) 约为-1.57 VSCE,极化腐蚀速率 (Vi) 为8.98 mm/a, 阻抗 (Rp) 为1011.21 Ω·cm2。浸泡在模拟体液中不同时间的阻抗结果表明,阻抗呈先增大后减小的趋势,浸泡2 h后,峰值阻抗为2151.62 Ω·cm2,这与浸泡后合金表面出现致密的腐蚀产物层有关。

关键词 镁合金挤压模拟体液电化学测试腐蚀行为    
Abstract

The electrochemical behavior of the extruded dilute Mg-2Sn-1Al-1Zn alloy was examined in simulated body fluid (SBF) by means of electrochemical workstation CS350. While stable open circuit potential, polarization curve and the impedance data after immersion for different time were measured. Results indicate that the stable open circuit potential value was -1.57 VSCE, the polarization corrosion rate was 8.98 mm/a and the corrosion resistance was 1011.21 Ω·cm2. Impedance tests at different time of immersion in simulated body fluids showed that the corrosion resistance first increased and then decreased. Due to the corrosion product layer on the surface of the soaked alloy is the densest after 2 h of immersion, the value of corrosion resistance reached a maximum of 2151.62 Ω·cm2.

Key wordsmagnesium alloy    extrusion    simulated body fluid    electrochemical testing    corrosion    behavior
收稿日期: 2019-04-28     
ZTFLH:  TG174.46  
基金资助:中国山西留学基金(2014-023);山西省高校科技创新项目(2014017);山西省自然科学基金(201801D121088)
通讯作者: 程伟丽     E-mail: chengweili7@126.com
Corresponding author: CHENG Weili     E-mail: chengweili7@126.com
作者简介: 张尧,男,1993年生,硕士生

引用本文:

张尧, 郭晨, 刘妍慧, 郝美娟, 成世明, 程伟丽. 挤压态Mg-2Sn-1Al-1Zn合金在模拟体液中的电化学腐蚀行为[J]. 中国腐蚀与防护学报, 2020, 40(2): 146-150.
Yao ZHANG, Chen GUO, Yanhui LIU, Meijuan HAO, Shiming CHENG, Weili CHENG. Electrochemical Corrosion Behavior of Extruded Dilute Mg-2Sn-1Al-1Zn Alloy in Simulated Body Fluid. Journal of Chinese Society for Corrosion and protection, 2020, 40(2): 146-150.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2019.226      或      https://www.jcscp.org/CN/Y2020/V40/I2/146

图1  挤压态合金的开路电位与极化曲线
SpecimenEcorrVIcorrmA·cm-2βamVβcmVVimm·a-1
TAZ211-1.523.89×10-244.74234.468.98
TAZ111[10]-1.535.42×10-2167.3228.6312.4
表1  挤压态合金极化测试的拟合参数
图2  挤压态合金的EIS图
图3  挤压态合金的EIS等效电路图
SpecimenRs / Ω·cm2CPE / F·cm-2nRc / Ω·cm2RL / Ω·cm2L / H·cm-2Rp / Ω·cm2
TAZ21114.721.107×10-50.957838.81157.68321.51011.21
TAZ111[10]9.7416.818×10-60.995526.50187.70417.1723.94
表2  挤压态合金EIS数据的拟合电化学参数
图4  挤压态TAZ合金浸泡模拟体液中的析氢曲线
图5  挤压态合金在模拟体液中浸泡不同时间的Nyquist曲线
Immersion time / hRs / Ω·cm2C1 / F·cm-2Rc / Ω·cm2RL / Ω·cm2L1 / H·cm-2Rp / Ω·cm2
C1n
0.565.953.703×10-60.915811328.77331.41205.72
144.323.823×10-60.88711024025801548.32
2116.24.142×10-60.9241574.92460.50.2812151.62
340.504.627×10-60.9921408.36203712.71651.86
表3  挤压态合金在不同时间间隔EIS测试结果的拟合参数
图6  挤压态合金在模拟体液浸泡2.5 h后的腐蚀产物表面SEM像
[1] Zeng X Q, Wang Q D, Lv Y Z, et al. New progress in the application of magnesium alloys [J]. Foundry, 1998, (11): 39
[1] (曾小勤, 王渠东, 吕宜振等. 镁合金应用新进展 [J]. 铸造, 1998, (11): 39)
[2] Long S Y, Xu S Y, Za J L, et al. Application of magnesium alloy is conducive to the vehicle "Energy Saying" [J]. Resour. Recycl., 2011, (3): 48
[2] (龙思远, 徐绍勇, 查吉利等. 镁合金应用与汽车节能减排 [J]. 资源再生, 2011, (3): 48)
[3] Zhang Y F. Prospect analysis of magnesium alloy application field in China [J]. China New Technol. Prod., 2010, (9): 106
[3] (张运法. 我国镁合金应用领域开发前景分析 [J]. 中国新技术新产品, 2010, (9): 106)
[4] Rad H R B, Idris M H, Kadir M R A, et al. Microstructure analysis and corrosion behavior of biodegradable Mg-Ca implant alloys [J]. Mater. Des., 2012, 33(1): 88
[5] Zeng R, Dietzel W, Witte F, et al. Progress and challenge for magnesium alloys as biomaterials [J]. Adv. Eng. Mater., 2008, 10(8): B3
[6] Li G Q, Wu G H, Fan Y, et al. Current state and protection technique of magnesium alloys [J]. Mater. Rev., 2005, 19(11): 60
[6] (李冠群, 吴国华, 樊昱等. 镁合金的腐蚀研究现状与防护途径 [J]. 材料导报, 2005, 19(11): 60)
[7] Cheng W L, Park S S, You B S, et al. Microstructure and mechanical properties of binary Mg-Sn alloys subjected to indirect extrusion [J]. Mater. Sci. Eng., 2010, A527: 4650
[8] Ha H Y, Kang J Y, Yang J, et al. Role of Sn in corrosion and passive behavior of extruded Mg-5wt%Sn alloy [J]. Corros. Sci., 2016, 102: 355
[9] Bakhsheshi-Rad H R, Abdul-Kadir M R, Idris M H, et al. Relationship between the corrosion behavior and the thermal characteristics and microstructure of Mg-0.5Ca-xZn alloys [J]. Corros. Sci., 2012, 64: 184
[10] Cheng W L, Zhang Y, Ma S C, et al. Tensile properties and corrosion behavior of extruded low-alloyed Mg-1Sn-1Al-1Zn alloy: The Influence of microstructural characteristics [J]. Materials, 2018, 11(7): 1157
[11] Metalnikov P, Ben-Hamu G, Eliezer D, et al. Role of Sn in microstructure and corrosion behavior of new wrought Mg-5Al alloy [J]. J. Alloy. Compd., 2019, 777: 835
[12] Liu C L, Wang Y J, Zeng R C, et al. In vitro corrosion degradation behaviour of Mg-Ca alloy in the presence of albumin [J]. Corros. Sci., 2010, 52(10): 3341
[13] Cheng W L, Ma S C, Bai Y, et al. Corrosion behavior of Mg-6Bi-2Sn alloy in the simulated body fluid solution: The influence of microstructural characteristics [J]. J. Alloy. Compd., 2018, 731: 945
[14] Cheng W L, Huo R, Tian Q W, et al. Dependence of microstructure, texture and tensile properties on working conditions in indirect-extruded Mg-6Sn alloys [J]. Rare Met. Mater. Eng., 2015, 44(9): 2132
[15] Li J Z, Tian Y W. Study on passivation mechanism of magnesium alloys [A]. National Conference on Metallurgical Physics and Chemistry [C]. Ma'anshan, 2010
[15] (李建中, 田彦文. 镁合金钝化机理的研究 [A]. 2010年全国冶金物理化学学术会议论文集 [C]. 马鞍山, 2010)
[16] Wang B J, Xu D K, Dong J H, et al. Effect of corrosion product films on the in vitro degradation behavior of Mg-3%Al-1%Zn (in wt%) alloy in Hank's solution [J]. J. Mater. Sci. Technol., 2018, 34(10): 1756
[1] 唐荣茂, 朱亦晨, 刘光明, 刘永强, 刘欣, 裴锋. Q235钢/导电混凝土在3种典型土壤环境中腐蚀的灰色关联度分析[J]. 中国腐蚀与防护学报, 2021, 41(1): 110-116.
[2] 郑黎, 王美婷, 于宝义. 镁合金表面冷喷涂技术研究进展[J]. 中国腐蚀与防护学报, 2021, 41(1): 22-28.
[3] 魏征, 马保吉, 李龙, 刘潇枫, 李慧. 镁合金表面超声滚压预处理对微弧氧化膜耐蚀性能的影响[J]. 中国腐蚀与防护学报, 2021, 41(1): 117-124.
[4] 于浩冉, 张文丽, 崔中雨. 4种镁合金在Cl--NH4+-NO3-溶液体系中的腐蚀行为差异研究[J]. 中国腐蚀与防护学报, 2020, 40(6): 553-559.
[5] 岳亮亮, 马保吉. 超声表面滚压对AZ31B镁合金腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2020, 40(6): 560-568.
[6] 李琳, 陈义庆, 高鹏, 艾芳芳, 钟彬, 伞宏宇, 杨颖. 除冰盐环境下桥梁钢的耐腐蚀性能研究[J]. 中国腐蚀与防护学报, 2020, 40(5): 448-454.
[7] 张欣, 杨光恒, 王泽华, 曹静, 邵佳, 周泽华. 冷拉拔变形过程中含稀土铝镁合金腐蚀行为研究[J]. 中国腐蚀与防护学报, 2020, 40(5): 432-438.
[8] 郏义征, 王保杰, 赵明君, 许道奎. 固溶处理制度对挤压态Mg-Zn-Y-Nd镁合金在模拟体液中腐蚀和析氢行为的影响规律研究[J]. 中国腐蚀与防护学报, 2020, 40(4): 351-357.
[9] 胡露露, 赵旭阳, 刘盼, 吴芳芳, 张鉴清, 冷文华, 曹发和. 交流电场与液膜厚度对A6082-T6铝合金腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2020, 40(4): 342-350.
[10] 王新华, 杨永, 陈迎春, 位凯玲. 交流电流对X100管线钢在库尔勒土壤模拟液中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2020, 40(3): 259-265.
[11] 胡玉婷, 董鹏飞, 蒋立, 肖葵, 董超芳, 吴俊升, 李晓刚. 海洋大气环境下TC4钛合金与316L不锈钢铆接件腐蚀行为研究[J]. 中国腐蚀与防护学报, 2020, 40(2): 167-174.
[12] 沈树阳, 王东胜, 孙士斌, 杨剔, 赵前进, 王鑫, 张亚飞, 常雪婷. 深冷处理对EH40极寒环境船用钢板的海水腐蚀性能影响[J]. 中国腐蚀与防护学报, 2020, 40(2): 151-158.
[13] 何壮,王兴平,刘子涵,盛耀权,米梦芯,陈琳,张岩,李宇春. 316L和HR-2不锈钢在盐酸液膜环境中的钝化与点蚀[J]. 中国腐蚀与防护学报, 2020, 40(1): 17-24.
[14] 苏小红,胡会娥,孔小东. W颗粒/Zr41.2Ti13.8Cu12.5Ni10Be22.5基非晶复合材料在3%NaCl溶液中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2020, 40(1): 70-74.
[15] 郏义征, 赵明君, 程世婧, 王保杰, 王硕, 盛立远, 许道奎. 模拟人体体液中镁合金的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2019, 39(6): 463-468.