磁场对NaCl溶液中X52管线钢腐蚀行为的影响
1.
2.
Effect of Magnetic Field on Corrosion Behavior of X52 Pipeline Steel in NaCl Solution
1.
2.
通讯作者: 杨永,E-mail:39530354@qq.com,研究方向为压力管道安全
收稿日期: 2021-05-24 修回日期: 2021-06-09
基金资助: |
|
Corresponding authors: YANG Yong, E-mail:39530354@qq.com
Received: 2021-05-24 Revised: 2021-06-09
作者简介 About authors
杨永,男,1979年生,博士,高级工程师
采用开路电位、极化曲线、电化学阻抗谱及腐蚀形貌观察等技术,研究了不同磁场强度 (0、0.9、1.9及2.8 kA/m) 对3.5%NaCl溶液中X52管线钢腐蚀行为的影响。结果表明:磁场使腐蚀电位负移、腐蚀电流密度增大、电荷转移阻抗减小,并一定程度上改变腐蚀形貌;磁场强度越大,对电化学腐蚀行为的影响越大。机理分析表明,磁场对电化学反应过程的影响由电极表面磁感应强度、磁感应梯度以及电解质中离子磁性、浓度等多因素综合决定;Lorentz力加速Fe2+扩散、减小双电层厚度及Kelvins力对Cl-作用而增加电极界面氧含量等腐蚀促进作用大于Kelvins力使Fe2+在电极表面聚集的腐蚀抑制作用,从而整体上促进了电化学腐蚀。
关键词:
Magnetic flux leakage internal inspection is the main method for detecting metal damage in oil and gas pipelines. After the magnetic flux leakage testing is implemented, there will exist a residual magnetic field in the pipeline for a long time. The influence of such residual magnetic field on the corrosion behavior of the pipeline steel is not completely clear yet. Therefore, the influence of different magnetic field intensities (0.9, 1.9 and 2.8 kA/m respectively) on the corrosion behavior of X52 pipeline steel in 3.5%NaCl solution was investigated by means of open circuit potential, polarization curves, electrochemical impedance spectroscopy and corrosion morphology observation techniques. The results indicated that the presence of magnetic field can shift negatively the corrosion potential, increased the corrosion current density, reduced the charge transfer resistance, and changed the corrosion morphology to a certain extent. The greater the magnetic field intensity, the greater the influence on the electrochemical corrosion behavior. Through mechanism analysis, it follows that the influence of magnetic field on the electrochemical reaction process may comprehensively be determined by multiple factors such as the magnetic flux intensity near the electrode surface, the magnetic field gradient, the ion-magnetism and -concentration in the electrolyte. The Loren magnetic force can accelerate the diffusion of Fe2+ and reduce the thickness of the electric double layer, while the Kelvin force can increase the oxygen content of the electrode interface, all the above factors could promote the corrosion process, the effect of which may be stronger than the corrosion inhibition effect induced by that the Kelvin force causing Fe2+ to accumulate on the electrode surface, so that the electrochemical corrosion process was generally promoted.
Keywords:
本文引用格式
杨永, 张庆保, 朱万成, 罗艳龙.
YANG Yong, ZHANG Qingbao, ZHU Wancheng, LUO Yanlong.
磁场对金属腐蚀影响的研究结论不尽相同。多数研究[5-8]表明,Fe在溶液中受磁场影响时产生磁致过电位,使电极电位正移;也有研究[9]表明铝镁合金在NaCl溶液中受磁场影响时的腐蚀电位负移。研究发现磁场对腐蚀分布具有重要影响,磁场会改变自然腐蚀的阴阳极状态[10],磁场与金属腐蚀面的相对方向[11,12]明显影响腐蚀区域的分布。磁场对金属的腐蚀速率影响也不一致,Ghabashy[13]研究认为,Fe在氯化铁溶液中腐蚀速率受外加磁场的影响,外加磁场较小时腐蚀速率较自然腐蚀速率降低,外加磁场较大时腐蚀速率较自然腐蚀速率增大;张康南等[14]研究表明X80钢在沈阳草甸土中腐蚀速率随着外加磁场强度增强而增大;惠海军等[15]研究表明磁场加速了X60钢在长沙地区土壤中的腐蚀速率;Jackson等[4]研究表明磁场作用加重了试样表面的点蚀和裂纹等缺陷;Espina-Hernández等[16]研究却表明磁场抑制了点蚀的发展;卫晓阳等[17]研究表明磁场可以抑制Cu的微生物腐蚀进程。关于磁场对腐蚀行为产生影响的机理,一般都认为其对腐蚀电极的活化反应过程影响甚微[18,19],主要是对反应物和反应产物的传质具有重要影响[19-21],但Sueptitz等[22]在研究稀硫酸中Fe腐蚀受磁场影响时认为,垂直于电极反应面的磁场可以使Fe2+远离电极、H+靠近电极,从而电极表面溶液pH值减小,造成活化反应电流密度增大。Lorentz力和磁场梯度力是影响传质的主要因素[21,23,24],磁场与带电粒子运动的相对方向决定Lorentz力方向,磁场梯度及粒子磁性决定磁场梯度力的方向,综合影响电极反应速率[25,26]。然而,以上除了Espina-Hernández之外的研究都是将实验试样及电解溶液放置于外加的均匀磁场中,与漏磁内检测的剩余磁场分布明显不同,难以反映客观状况,且未见管道海水腐蚀受磁场影响的研究文献。
本文以开路电位 (OCP)、电位极化曲线、电化学阻抗谱 (EIS) 测量以及腐蚀形貌观察等技术研究磁场对3.5% (质量分数) NaCl溶液中X52管线钢腐蚀行为的影响,并探讨了磁场对腐蚀影响的机理。
1 实验方法
试样材料为X52管线钢,其化学成分 (质量分数,%) 为:C 0.20,Si 0.45,Mn 1.60,P 0.02,S 0.01,Fe余量。试样为
电化学测试采用三电极体系在Gamry Reference 600+电化学工作站上完成。辅助电极为铂电极,饱和甘汞电极 (SCE) 为参比电极。将试样在-1.2 V电位下阴极极化3 min后测试开路电位 (OCP),待电位稳定后,分别开展静、动电位极化曲线和电化学阻抗谱 (EIS) 测试。以腐蚀电位测试静电位极化曲线;以1 mV/s扫描速率测试动电位极化曲线;EIS正弦波激励信号振幅为±10 mV,扫描频率范围为105~10-2 Hz。用软件Origin2017拟合极化曲线动力学参数,软件ZsimpWin3.60拟合电化学阻抗谱曲线。利用光学显微镜观察腐蚀形貌。
线圈中分别施加0、1、2、3 A直流电流以感应出不同的磁场强度。磁场强度由
式中,H为磁场强度 (A/m);N为线圈匝数;I为线圈中电流值 (A);L为磁路长度 (m),本文中为圆环试样周长。
线圈中施加1、2和3 A直流电流产生的计算磁强度分别为0.9、1.9及2.8 kA/m。相关研究[27]表明,在4.5 kA/m的磁场强度下,X52钢磁感应强度不大于1.5 T,则本研究中的试样均处于不同程度的非饱和磁化状态。
2 结果与讨论
2.1 OCP
图1
图1
不同的磁场强度对X52管线钢腐蚀电位影响
Fig.1
Effect of magnetic field on the corrosion potential of X52 pipeline steel: (a) corrosion potential of samples under different magnetic field strengths, (b) the change of sample corrosion potential with different magnetic field strength
2.2 电位极化
图2分别为不同磁场强度下NaCl溶液中X52管线钢恒电位及动电位极化曲线。恒电位极化电位设为自腐蚀电位,磁场强度为0.9 kA/m时,腐蚀电流为阴极电流并达到稳定,但数值很小;磁场强度为1.9和2.8 kA/m时,腐蚀电流变成阳极电流并持续增大。动电位极化曲线显示,有无磁场情况都为活性溶解;有磁场时,随着磁场强度增大,腐蚀电流密度从7.3 μA/cm2增长到12.7、22.8及37.1 μA/cm2,即磁场强度越大腐蚀速率越大。
图2
图2
不同磁场强度下的恒电位及动电位极化曲线
Fig.2
Potentiostatic (a) and potentiodynamic (b) polarization curves with magnetic fields
2.3 EIS
图3a和b为不同磁场强度下3.5%NaCl溶液中X52管线钢EIS曲线。由Nyquist图可见,不同磁场强度下电化学阻抗谱都为单一容抗弧,说明反应过程由电子转移过程控制。由容抗弧半径大小可见,磁场强度越大,电化学反应阻抗越小,耐腐蚀性越弱。结合Bode图,以图3c所示等效电路对EIS数据进行拟合,等效电路中,Rs为溶液电阻,Q为双电层电容常相位角元件,Rt为电荷转移电阻。拟合结果见表1,电荷转移电阻随着磁场强度增大而减小,2.8 kA/m磁场强度下的电荷转移电阻 (369 Ω·cm2) 不到无磁场时的 (1182 Ω·cm2) 三分之一,即耐蚀性随着磁场强度增大而大幅减弱;弥散指数ndl随着磁场强度增大而增大,说明磁场强度越大腐蚀电流密度分布越均匀,应该是由于磁场改变了试样表面阴阳极的分布状态[10]。
图3
图3
不同磁场强度下的EIS Nyquist和Bode图及等效电路
Fig.3
Nyquist (a) and Bode (b) plots of EIS with magnetic fields and equivalent circuit of EIS (c)
表1 不同磁场强度下NaCl溶液中试样EIS等效电路拟合结果
Table 1
H / kA/m | Rs / Ω·cm2 | Ydl / S·sn·cm-2 | ndl | Rt / Ω·cm2 |
---|---|---|---|---|
0 | 9.4 | 1.55×10-3 | 0.6930 | 1182 |
0.9 | 11.0 | 1.74×10-3 | 0.7316 | 827 |
1.9 | 9.1 | 2.11×10-3 | 0.7507 | 562 |
2.8 | 9.5 | 2.19×10-3 | 0.7793 | 369 |
2.4 腐蚀形貌
图4为不同磁场强度下X52管线钢在3.5%NaCl溶液中浸泡10 d的腐蚀形貌。自然腐蚀情况下,部分表面明显比其余部分腐蚀严重;0.9 kA/m磁场强度下的腐蚀相对更严重,但腐蚀程度更均匀;1.9 kA/m磁场强度下的腐蚀明显更严重,表面分布许多较深的小腐蚀坑。
图4
图4
不同磁场强度下X52管线钢在3.5%NaCl溶液中浸泡10 d的腐蚀形貌
Fig.4
Optical photographs of X52 steel in 3.5%NaCl solution for 10 d under 0 kA/m (a1, a2), 0.9 kA/m (b1, b2) and 1.9 kA/m (c1, c2) magnetic fields
2.5 磁场作用机理
图5
图5
试样表面磁感应强度分布示意图
Fig.5
Schematic diagram of the magnetic flux intensity distribution on the surface of the sample
式中,J为带电离子的能量密度,B为磁感应强度。
本研究中,溶液中的离子主要有Na+、Cl-以及钢腐蚀产生的Fe2+,其中Fe2+为顺磁性离子,且在电极表面不断产生并向溶液中扩散。由图5可见,Fe2+扩散时会切割磁力线从而产生平行于电极表面的FL,加速贴近电极表面的Fe2+扩散。逆磁性离子Na+和Cl-不参与电化学反应,基本不受FL的影响。
在非均匀磁场中,存在使顺磁性离子向高磁感应强度区移动、逆磁性离子向低磁感应强度区移动的Kelvins力FB:
式中,
离子磁性、浓度、磁感应强度和梯度值决定FB大小,磁感应强度分布及离子磁性决定离子的移动方向。电极表面及几何不连续处边缘的磁感应强度更大 (如图5所示),Fe2+倾向于电极表面及几何不连续处边缘集聚,Na+和Cl-倾向于远离这些位置。
另一个重要的磁场力是顺磁性梯度力,表达式见
本研究中的阳极、阴极反应主要为:
Lorentz力加速Fe2+扩散的同时,其引起的微观溶液运动会减小双电层厚度[32],减小了电化学反应速阻抗 (图3);但Kelvins力对Fe2+的集聚作用会抑制腐蚀的发生。Kelvins力使逆磁性离子Cl-在电极表面的浓度减小,一定程度上提高了O的溶解度[33],从而促进阴极反应的进行 (图2b)。可见,磁场对电化学反应过程的影响由多种因素综合决定,取决于电极表面的磁场强度、梯度以及电解质中离子磁性、浓度等。实验显示本研究中磁场促进了腐蚀发展,说明Lorentz力加速Fe2+扩散、减小双电层厚度及Kelvins力增加氧含量等腐蚀促进作用超过了Kelvins力使Fe2+在电极表面聚集的腐蚀抑制作用。
3 结论
(1) 在3.5%NaCl溶液中,磁场使X52管线钢腐蚀电位负移、腐蚀电流密度增大、反应电荷转移阻抗减小,并一定程度上改变腐蚀形貌。
(2) 在3.5%NaCl溶液中,X52管线钢管体磁场强度越大,对电化学腐蚀行为的影响越大。
(3) 磁场对电化学反应过程的影响由电极表面磁感应强度、磁感应梯度以及电解质中离子磁性、浓度等多因素综合决定,Lorentz力加速Fe2+扩散、减小双电层厚度及Kelvins力增加氧含量等腐蚀促进作用大于Kelvins力使Fe2+在电极表面聚集的腐蚀抑制作用,从而总体上促进了电化学腐蚀。
参考文献
Construction progress and existing problems of intelligent pipeline network
[J].
智慧管网建设进展及存在问题
[J].
Ultrasonic echo detection technology for coating defects on submarine pipeline
[J].
海底管道外涂层缺陷超声回波检测技术
[J].
Magnetic flux leakage internal detection technology of the long distance oil pipeline
[J].
长输油气管道漏磁内检测技术
[J].
The influence of magnetization on corrosion in pipeline steels
[A].
The effect of strong magnetic field on corrosion behavior of iron
[J]. J.
磁场对铁腐蚀过程中阴极析氢和阳极溶解的影响
[J].
Effect of magnetic field and Cl- on anodic polarization behavior of iron in neutral 0.5 mol/L Na2SO4 solution
[J]. J.
磁场和Cl-对铁在中性Na2SO4溶液中阳极极化行为的影响
[J].
Magnetic field induced variation of open circuit state of iron in chloride solutions
[J].
磁场作用下铁在盐酸和氯化钠溶液中自腐蚀状态的变化
[J].
Effect of magnetic field on anodic dissolution of iron in sodium perchlorate solution at different potentials
[J].
磁场对铁在不同电位高氯酸钠溶液中阳极溶解的影响
[J].
Effects of magnetic fieldon electrochemical behavior of AZ31B in NaCl solution
[J].
磁场对AZ31B在NaCl溶液中电化学行为的影响
[J].
Effect of magnetic field on corrosion
[J].
磁场对腐蚀的影响
[J].
Anomalous surface morphology of iron generated after anodic dissolution under magnetic fields
[J].
Effects of an applied magnetic field on the dissolution and passivation of iron in sulphuric acid
[J].
Effect of magnetic field on the rate of steel corrosion in aqueous solutions
[J].
Effect of magnetic field on corrosion of X80 pipeline steel in meadow soil at Shenyang area
[J]. J.
磁场对X80管线钢在沈阳草甸土中腐蚀行为的影响
[J].
Effect of magnetic field on corrosion of X60 pipeline steel in soil of Changsha area
[J].
磁场对X60钢材料在长沙地区土壤中腐蚀行为的影响
[J].
Pitting corrosion in low carbon steel influenced by remanent magnetization
[J].
Influence of magnetic field on corrosion of pure Cu in artificial seawater with multispecies aerobic bacteria
[J]. J.
磁场对纯Cu微生物腐蚀行为的影响
[J].
Effect of high gradient magnetic fields on the anodic behaviour and localized corrosion of iron in sulphuric acid solutions
[J].
Effects of a magnetic field on the anodic dissolution, passivation and transpassivation behaviour of iron in weakly alkaline solutions with or without halides
[J].
Magnetic field effects on mass transport
[J].
Influence of magnetic forces on electrochemical mass transport
[J].
Magnetic field effects on the active dissolution of iron
[J].
Magnetic field effect on the anodic behaviour of a ferromagnetic electrode in acidic solutions
[J].
Effects of the Lorentz force and the gradient magnetic force on the anodic dissolution of nickel in HNO3+NaCl solution
[J].
Effects of magnetic field Directedorthogonally to surfaces on electrochemical processes
[J].
Effects of the magnetic field on the corrosion dissolution of the 304 SS│FeCl3 system
[J].
Magnetic and microstructural investigations of pipeline steels
[J].
Is there a magnetic field effect on electrochemical kinetics?
[J].
Magnetic field-controlled microfluidic transport
[J].
Magnetic fields in electrochemistry: the Lorentz force. A mini-review
[J].
Magnetic fields in electrochemistry: the Kelvin force. A mini-review
[J].
In situ observation of Cu2+ concentration profile during Cu dissolution in magnetic field
[J].
/
〈 |
|
〉 |
