Please wait a minute...
中国腐蚀与防护学报  2021, Vol. 41 Issue (3): 400-404    DOI: 10.11902/1005.4537.2020.047
  研究报告 本期目录 | 过刊浏览 |
14Cr1MoR钢焊接接头组织及耐蚀性能
乔忠立, 王玲(), 史艳华, 杨众魁
辽宁石油化工大学机械工程学院 抚顺 113001
Microstructure and Corrosion Resistance of Welded Joint of 14Cr1MoR Steel
QIAO Zhongli, WANG Ling(), SHI Yanhua, YANG Zongkui
School of Mechanical Engineering, Liaoning Petrochemical University, Fushun 113001, China
全文: PDF(8481 KB)   HTML
摘要: 

以14Cr1MoR钢的焊接接头为研究对象,采用金相显微镜观察接头组织和宏观浸泡实验后接头的腐蚀形貌,采用电化学方法测试接头不同部位在NaCl溶液中的极化曲线和阻抗谱,研究14Cr1MoR钢焊接接头的腐蚀行为规律。结果表明:14Cr1MoR钢为易淬火钢,其焊接接头组织包括粗大马氏体、大小不一的贝氏体、铁素体及少量碳化物,且分布不均匀;与焊缝区相比,14Cr1MoR钢母材的耐蚀性较差,短期腐蚀变化明显,长期浸泡产生的腐蚀产物疏松多孔易剥落,对基材没有保护作用;母材的腐蚀速率约是焊缝腐蚀速度的2倍。

关键词 14Cr1MoR钢焊接接头Cl-介质腐蚀行为    
Abstract

The corrosion behavior of the welded joint of 14Cr1MoR steel in 3.5% (mass fraction) NaCl solution was studied by means of mass loss measurement, polarization curve measurement, electrochemical impedance spectroscopy, and metallographic microscope. The results show that 14Cr1MoR steel is a kind of steel easy hardening by quenching and its welded joint presents a microstructure composed of coarse martensite, bainite, ferrite and a small amount of carbide, while they distribute randomly. Meanwhile, compared with the weld seam, the base metal of 14Cr1MoR steel has poor corrosion resistance, its corrosion morphology changes obviously in the short term, however by long-term soaking the formed corrosion products are loose, porous and easy to peel off, which exhibited poor protective effect on the base metal, so that the corrosion rate of the base metal is about 2 times higher than that of the weld seam.

Key words14Cr1MoR steel    welded joint    Cl- medium    corrosion behavior
收稿日期: 2020-03-13     
ZTFLH:  TE662  
通讯作者: 王玲     E-mail: 13941323134@163.com
Corresponding author: WANG Ling     E-mail: 13941323134@163.com
作者简介: 乔忠立,男,1996年生,硕士生

引用本文:

乔忠立, 王玲, 史艳华, 杨众魁. 14Cr1MoR钢焊接接头组织及耐蚀性能[J]. 中国腐蚀与防护学报, 2021, 41(3): 400-404.
Zhongli QIAO, Ling WANG, Yanhua SHI, Zongkui YANG. Microstructure and Corrosion Resistance of Welded Joint of 14Cr1MoR Steel. Journal of Chinese Society for Corrosion and protection, 2021, 41(3): 400-404.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2020.047      或      https://www.jcscp.org/CN/Y2021/V41/I3/400

图1  14Cr1MoR钢焊接接头不同区域金相组织照片
图2  焊接接头在3.5%NaCl溶液中浸泡不同时间的形貌
图3  3.5%NaCl溶液中焊缝、母材、热影响区开路电位与时间关系曲线
图4  焊接接头不同区域阻抗的Nyquist图谱
SampleRs / Ω·cm2Qdl / CQdl-nRt / Ω·cm2Qp / CQp-nRp / Ω·cm2
Weld0.8775.546×10-715.4414.77×10-40.621786
Heat affected zone0.6321.374×10-70.965.9813.71×10-40.66642.5
Base metal0.2674.001×10-60.826.0797.156×10-40.77215.1
表1  焊接接头不同区域的阻抗曲线拟合参数
图5  焊接接头不同区域动电位极化曲线图
SampleESCE / VIa / μA·cm-2vL / mm·a-1
Heat affected zone-0.3044.7200.0552
Weld-0.36364.3660.0511
Base metal-0.31711.040.1292
表2  焊接接头不同区域的极化曲线参数
1 Wang S H, Xue W. Study on the properties of domestic 14Cr1MoR steel [J]. Heat Treat. Met., 2004, 29(4): 35
1 王顺花, 薛巍. 国产14Cr1MoR钢板的性能研究 [J]. 金属热处理, 2004, 29(4): 35
2 Ren A M, Feng Z G, Li J Y. Study on welding process of 14Cr1MoR steel for hydrogen contact equipment [J]. Hot Working Technol., 2018, 47(15): 242
2 任爱梅, 冯振国, 历金雁. 临氢设备用14Cr1MoR钢的焊接工艺研究 [J]. 热加工工艺, 2018, 47(15): 242
3 Wang W L, Dang S X, Wang Y J. The welding of homemade 14Cr1MoR steel [J]. Electr. Weld. Mach., 2002, 32(7): 32
3 王文利, 党曙昕, 王迎君. 国产14Cr1MoR钢的焊接 [J]. 电焊机, 2002, 32(7): 32
4 Liu D X, Fu R L. Welding procedure analysis for submerged arc welding cracking of 14Cr1MoR plate [J]. Sulphur Phosphorus Bulk Mater. Handl. Relat. Eng., 2017, (6): 42
4 刘东旭, 傅瑞丽. 14Cr1MoR中厚板埋弧焊接裂纹的焊接工艺分析 [J]. 硫磷设计与粉体工程, 2017, (6): 42
5 Fu L Q, Liu X L, Fan H M. Research and development of 14Cr 1MoR steel plate [J]. Jiangxi Metall., 2010, 30(1): 1
5 扶利群, 刘小林, 范红梅. 14Cr 1MoR钢板的研制开发 [J]. 江西冶金, 2010, 30(1): 1
6 Li Y B, Niu H X, Wu Y Y, et al. Study and development of large thickness 14Cr1MoR steel plate for ammonia converter [J]. Wide Heavy Plate, 2016, 22(6): 19
6 李样兵, 牛红星, 吴艳阳等. 氨合成塔用大厚度14Cr1MoR钢板的研制开发 [J]. 宽厚板, 2016, 22(6): 19
7 Han Y M. Introduction of characteristics in design of large coke drum [J]. Process Equip. Piping, 2014, 51(1): 40
7 韩玉梅. 大型焦炭塔设计特点介绍 [J]. 化工设备与管道, 2014, 51(1): 40
8 Zhao X J. Corrosion analysis and anticorrosion measures of 14Cr1MoR coke tower [J]. Corros. Prot. Petrochem. Ind., 2017, 34(3): 17
8 赵新建. 14Cr1MoR焦炭塔腐蚀分析和防护措施 [J]. 石油化工腐蚀与防护, 2017, 34(3): 17
9 Xu J, Zhong M Y, Guo S X, et al. Characteristics of hydrogen damages for hydrogenation reactor wall-materials [J]. J. Chin. Soc. Corros. Prot., 2003, 23: 149
9 徐坚, 钟曼英, 郭世行等. 加氢反应器壁材料的氢损伤特性 [J]. 中国腐蚀与防护学报, 2003, 23: 149
10 He G X, Men X Z, Huang J. Effect of heat treatment process on structure and properties of 14Cr1MoR steel plate [J]. Spec. Steel Technol., 2017, 23(2): 10
10 何广霞, 孟宪震, 黄军. 热处理工艺对14Cr1MoR钢板组织和性能的影响 [J]. 特钢技术, 2017, 23(2): 10
11 Jiang L, Guo X C, Li J J, et al. Welding of stainless clad steel plate 14Cr1MoR+347H [J]. Petro-Chem. Equip., 2009, 38(3): 70
11 姜莉, 郭晓春, 李娟娟等. 14Cr1MoR+347H不锈钢复合板焊接 [J]. 石油化工设备, 2009, 38(3): 70
12 Jian L P, Liu L B, Zhang J M, et al. Effect of rolling and heat treatment on properties and microstructure of 304-14Cr1MoR composite steel plate [J]. Met. Mater. Metall. Eng., 2019, 47(1): 15
12 简乐平, 刘立彪, 张计谋等. 轧制及热处理对304-14Cr1MoR复合板性能和组织的影响 [J]. 金属材料与冶金工程, 2019, 47(1): 15
13 Wang Q Z, Li Q G, Yue Z H, et al. Study on corrosion of 904L (SA240 N08904) explosive-clad plate [J]. Dev. Appl. Mater., 2017, 32(5): 53
13 王全柱, 李启耕, 岳宗洪等. 904L (N08904) 不锈钢复合板腐蚀性能研究 [J]. 材料开发与应用, 2017, 32(5): 53
14 Sui G Z, Mo Y Q, Sun L, et al. Failure Analysis of 14Cr1MoR steel in high temperature sulfur environment [J]. Corros. Prot., 2019, 40: 215
14 隨广洲, 莫烨强, 孙亮等. 14Cr1MoR钢在高温硫环境中的失效行为 [J]. 腐蚀与防护, 2019, 40: 215
15 Zhou J S, Hei P H, Qin J, et al. Analysis of heat treatment on pitting resistance of 14Cr1MoR+904L steel [J]. Dev. Appl. Mater., 2016, 31(2): 49
15 周杰士, 黑鹏辉, 秦建等. 热处理制度对14Cr1MoR+904L耐点蚀性能的分析 [J]. 材料开发与应用, 2016, 31(2): 49
16 Sun Y W, Zhong Y P, Wang L S, et al. Corrosion behavior of low-alloy high strength steels in a simulated common SO2-containing atmosphere [J]. J. Chin. Soc. Corros. Prot., 2019, 39: 274
16 孙永伟, 钟玉平, 王灵水等. 低合金高强度钢的耐模拟工业大气腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2019, 39: 274
17 Han W, Wang J, Wang Z Y, et al. Study on atmospheric corrosion of low alloy steels [J]. J. Chin. Soc. Corros. Prot., 2004, 24: 147
17 韩薇, 汪俊, 王振尧等. 碳钢与低合金钢耐大气腐蚀规律研究 [J]. 中国腐蚀与防护学报, 2004, 24: 147
18 Garcia C I, Lis A K, Pytel S M, et al. Ultra-low carbon bainitic steel plate steels: processing, microstructure and properties [J]. Trans. Iron .Steel Soc. AI ME, 1992, 13: 103
19 Li S P, Guo J, Yang S W, et al. Effect of carbon content and microstructure on the corrosion resistance of low alloy steels [J]. J. Univ. Sci. Technol. Beijing, 2008, 30: 16
19 李少坡, 郭佳, 杨善武等. 碳含量和组织类型对低合金钢耐蚀性的影响 [J]. 北京科技大学学报, 2008, 30: 16
[1] 苍雨, 黄毓晖, 翁硕, 轩福贞. 环境变量对核电汽轮机转子钢焊接接头电偶腐蚀性能的影响[J]. 中国腐蚀与防护学报, 2021, 41(3): 318-326.
[2] 黄涛, 许春香, 杨丽景, 李福霞, 贾庆功, 宽军, 张正卫, 武晓峰, 王中琪. Zr含量对Mg-3Zn-1Y合金显微组织和腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2021, 41(2): 219-225.
[3] 李琳, 陈义庆, 高鹏, 艾芳芳, 钟彬, 伞宏宇, 杨颖. 除冰盐环境下桥梁钢的耐腐蚀性能研究[J]. 中国腐蚀与防护学报, 2020, 40(5): 448-454.
[4] 张欣, 杨光恒, 王泽华, 曹静, 邵佳, 周泽华. 冷拉拔变形过程中含稀土铝镁合金腐蚀行为研究[J]. 中国腐蚀与防护学报, 2020, 40(5): 432-438.
[5] 胡露露, 赵旭阳, 刘盼, 吴芳芳, 张鉴清, 冷文华, 曹发和. 交流电场与液膜厚度对A6082-T6铝合金腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2020, 40(4): 342-350.
[6] 王新华, 杨永, 陈迎春, 位凯玲. 交流电流对X100管线钢在库尔勒土壤模拟液中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2020, 40(3): 259-265.
[7] 胡玉婷, 董鹏飞, 蒋立, 肖葵, 董超芳, 吴俊升, 李晓刚. 海洋大气环境下TC4钛合金与316L不锈钢铆接件腐蚀行为研究[J]. 中国腐蚀与防护学报, 2020, 40(2): 167-174.
[8] 张尧, 郭晨, 刘妍慧, 郝美娟, 成世明, 程伟丽. 挤压态Mg-2Sn-1Al-1Zn合金在模拟体液中的电化学腐蚀行为[J]. 中国腐蚀与防护学报, 2020, 40(2): 146-150.
[9] 苏小红,胡会娥,孔小东. W颗粒/Zr41.2Ti13.8Cu12.5Ni10Be22.5基非晶复合材料在3%NaCl溶液中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2020, 40(1): 70-74.
[10] 黄宸,黄峰,张宇,刘海霞,刘静. 高强耐候钢焊接接头电偶腐蚀行为研究[J]. 中国腐蚀与防护学报, 2019, 39(6): 527-535.
[11] 王勤英,裴芮,西宇辰. 镍基激光熔覆层冲刷腐蚀行为研究[J]. 中国腐蚀与防护学报, 2019, 39(5): 458-462.
[12] 郭铁明,张延文,秦俊山,宋志涛,董建军,杨新龙,南雪丽. 桥梁钢Q345q在3种模拟大气环境中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2019, 39(4): 319-330.
[13] 孙晓光,韩晓辉,张星爽,张志毅,李刚卿,董超芳. 超低碳奥氏体不锈钢焊接接头耐腐蚀性及环保型化学钝化工艺研究[J]. 中国腐蚀与防护学报, 2019, 39(4): 345-352.
[14] 李兆登,崔振东,侯相钰,高丽丽,王维珍,尹建华. 核级316LN不锈钢焊接接头在高温高压水中的腐蚀性能研究[J]. 中国腐蚀与防护学报, 2019, 39(2): 106-113.
[15] 黄博博,刘平,刘新宽,梅品修,陈小红. 新型HSn70-1铜网衣两年期海水腐蚀行为研究[J]. 中国腐蚀与防护学报, 2018, 38(6): 594-600.