Please wait a minute...
中国腐蚀与防护学报  2022, Vol. 42 Issue (3): 507-512    DOI: 10.11902/1005.4537.2021.120
  研究报告 本期目录 | 过刊浏览 |
高速列车铆接件中6A01铝合金腐蚀行为研究
陈志坚1, 周学杰1,2(), 陈昊1,3
1.武汉材料保护研究所有限公司 武汉 430030
2.湖北武汉大气淡水环境材料腐蚀国家野外观测科学研究站 武汉 430030
3.新疆尉犁大气环境材料腐蚀国家野外科学观测研究站 尉犁 841500
Corrosion Behavior of Riveted Pair of 6A01 Al-alloy-/304 Stainless Steel-plate Used for High-speed Train
CHEN Zhijian1, ZHOU Xuejie1,2(), CHEN Hao1,3
1.Wuhan Research Institute of Materials Protection, Wuhan 430030, China
2.Wuhan Materials Corrosion National Observation and Research Station, Wuhan 430030, China
3.Yuli Materials Corrosion National Observation and Research Station, Yuli 841500, China
全文: PDF(5762 KB)   HTML
摘要: 

利用失重法、扫描电子显微镜 (SEM)、能谱仪 (EDS)、X射线衍射仪 (XRD)、3D超景深显微镜等方法分析了试样的腐蚀动力学、锈层成分、腐蚀形貌。结果表明:偶接后铝合金发生了电偶腐蚀,电偶腐蚀速率是自腐蚀速率的8~10倍。铝合金主要腐蚀产物为Al2O3、Al(OH)3、AlO(OH)、AlCl3,腐蚀产物的变化影响了铝合金的腐蚀过程,产物的龟裂加速了腐蚀,而产物的致密化起到了保护作用。

关键词 铆接件6A01铝合金304不锈钢电偶腐蚀    
Abstract

The corrosion process of the riveted pair of 6A01 Al-alloy-/304 stainless steel-plate was assessed via cyclic salt spray test, aiming especially to clarify the corrosion behavior of the 6A01 Al-alloy, as the main component of the riveted pear. The corrosion kinetics, rust composition and corrosion morphology of the alloy samples were characterized by means of weightlessness method, scanning electron microscope (SEM), energy dispersive spectroscope (EDS), 3D super depth of field microscope and other methods. The results showed that galvanic corrosion and crevice corrosion occurred for the Al-alloy after being riveted onto 304 stainless steel, and its corrosion rate was 8-10 times higher than that of the blank alloy. The variation of corrosion products on the surface of Al-alloy may in turn affect the corrosion process of the Al-alloy. The cracking of the corrosion product can accelerate the corrosion process, whereas, the densification of the corrosion product may be beneficial to its protectiveness.

Key wordsriveting parts    6A01 Al- alloy    304 stainless steel    galvanic corrosion
收稿日期: 2021-05-28     
ZTFLH:  TG174  
通讯作者: 周学杰     E-mail: zhouxj11@163.com
Corresponding author: ZHOU Xuejie     E-mail: zhouxj11@163.com
作者简介: 陈志坚,男,1997年生,硕士生

引用本文:

陈志坚, 周学杰, 陈昊. 高速列车铆接件中6A01铝合金腐蚀行为研究[J]. 中国腐蚀与防护学报, 2022, 42(3): 507-512.
Zhijian CHEN, Xuejie ZHOU, Hao CHEN. Corrosion Behavior of Riveted Pair of 6A01 Al-alloy-/304 Stainless Steel-plate Used for High-speed Train. Journal of Chinese Society for Corrosion and protection, 2022, 42(3): 507-512.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2021.120      或      https://www.jcscp.org/CN/Y2022/V42/I3/507

图1  不同盐雾腐蚀时间后的6A01铝合金的腐蚀速率
图2  不同盐雾时间后6组试样中6A01铝合金表面形貌
图3  不同盐雾腐蚀时间后6A01铝合金搭接处表面点蚀坑形貌
图4  6组试样表面SEM像及对应区域EDS结果
图5  6A01铝合金经不同循环盐雾时间后腐蚀产物的XRD谱
图6  304不锈钢及6A01铝合金基材和循环盐雾实验后6组铝合金开路电位
图7  空白试样及循环盐雾实验后6组铝合金极化曲线
Test time dIcorr10-6A·cm-2EcorrmVEpitmVPassivation interval / mV
00.19-567------
100.288-800-647---
200.428-911-627180
300.766-984-547320
400.764-996-564310
502.19-1083-556410
608.46-1170-568480
表1  极化曲线拟合数据
1 Ruan H M, Dong Z H, Shi W, et al. Effect of inhibitors on pitting corrosion of AA6063 aluminium alloy based on electrochemical noise [J]. Acta Phys.-Chim. Sin., 2012, 28: 2097
1 阮红梅, 董泽华, 石维等. 基于电化学噪声研究缓蚀剂对AA6063铝合金点蚀的影响 [J]. 物理化学学报, 2012, 28: 2097
2 Liu Y J, Wang Z Y, Ke W. Study on the galvanic corrosion of aluminium alloy and stainless steel under a thin electrolyte film [J]. Equip. Environ. Eng., 2015, 12(1): 1
2 刘艳洁, 王振尧, 柯伟. 薄液膜下铝合金与不锈钢电偶腐蚀研究 [J]. 装备环境工程, 2015, 12(1): 1
3 Gou G Q, Huang N, Chen H, et al. Research on corrosion behavior of A6N01S-T5 aluminum alloy welded joint for high-speed trains [J]. J. Mech. Sci. Technol., 2012, 26: 1471
4 Feng C, Huang Y H, Shen Y F, et al. Galvanic corrosion and protection of 6061 aluminum alloy coupled with 30CrMnSiA steel in simulative industry-marine atmospheric environment [J]. Chin. J. Nonferrous Met., 2015, 25: 1417
4 冯驰, 黄运华, 申玉芳等. 6061铝合金与30CrMnSiA结构钢在模拟工业-海洋大气环境下的电偶腐蚀防护 [J]. 中国有色金属学报, 2015, 25: 1417
5 Mao Z D, Zheng Z Q, Li S Z, et al. Softening behavior of MIG welded joint of 6A01-T5 aluminum alloy for high-speed trains [J]. Hot Work. Technol., 2021, 50(1): 35
5 毛镇东, 郑自芹, 李帅贞等. 高速列车用6A01-T5铝合金MIG焊接接头软化行为研究 [J]. 热加工工艺, 2021, 50(1): 35
6 Liang J H, Zheng Z Q, Hang P P, et al. Corrosion behavior of 6A01 aluminium alloy welding joint under salt spray test [J]. Ord. Mater. Sci. Eng., 2020, 43(6): 54
6 梁景恒, 郑自芹, 杭平平等. 6A01铝合金焊接接头盐雾腐蚀行为研究 [J]. 兵器材料科学与工程, 2020, 43(6): 54
7 Lin S, Deng Y L, Tang J G, et al. Microstructures and fatigue behavior of metal-inert-gas-welded joints for extruded Al-Mg-Si alloy [J]. Mater. Sci. Eng., 2019, 745A: 63
8 Yin X T. Research on corrosion behavior of aluminum alloy materials in typical parts of motor vehicle body [D]. Beijing: China Academy of Machinery Science and Technology, 2019
8 尹学涛. 动车车体典型部位铝合金材料腐蚀行为研究 [D]. 北京: 机械科学研究总院, 2019
9 Bai M M, Bai Z H, Jiang L, et al. Corrosion behavior of H62 brass alloy/TC4 titanium alloy welded specimens [J]. J. Chin. Soc. Corros. Prot., 2020, 40: 159
9 白苗苗, 白子恒, 蒋立等. H62黄铜/TC4钛合金焊接件腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2020, 40: 159
10 Shi L J, Yang X Y, Song Y W, et al. Effect of corrosive media on galvanic corrosion of complicated tri-metallic couples of 2024 Al alloy/Q235 mild steel/304 stainless steel [J]. J. Mater. Sci. Technol., 2019, 35: 1886
11 Ding Q M, Qin Y X, Cui Y Y. Galvanic corrosion of aircraft components in atmospheric environment [J]. J. Chin. Soc. Corros. Prot., 2020, 40: 455
11 丁清苗, 秦永祥, 崔艳雨. 大气环境中飞机构件的电偶腐蚀研究 [J]. 中国腐蚀与防护学报, 2020, 40: 455
12 Liu Y J, Wang Z Y, Wang B B, et al. Mechanism of galvanic corrosion of coupled 2024 Al-alloy and 316L stainless steel beneath a thin electrolyte film studied by real-time monitoring technologies [J]. J. Chin. Soc. Corros. Prot., 2017, 37: 261
12 刘艳洁, 王振尧, 王彬彬等. 实时监测技术研究薄液膜下电偶腐蚀的机理 [J]. 中国腐蚀与防护学报, 2017, 37: 261
13 Zhao W H, Wang H W, Cai G Y, et al. Localized corrosion and corrosion inhibitor of Al-alloy AA6061 beneath electrolyte layers [J]. J. Chin. Soc. Corros. Prot., 2017, 37: 366
13 赵苇杭, 王浩伟, 蔡光义等. AA6061铝合金在含盐薄液膜下的局部腐蚀与缓蚀机理 [J]. 中国腐蚀与防护学报, 2017, 37: 366
14 Dong C F, An Y H, Li X G, et al. Electrochemical performance of initial corrosion of 7A04 aluminium alloy in marine atmosphere [J]. Chin. J. Nonferrous Met., 2009, 19: 346
14 董超芳, 安英辉, 李晓刚等. 7A04铝合金在海洋大气环境中初期腐蚀的电化学特性 [J]. 中国有色金属学报, 2009, 19: 346
15 Liang W J, Rometsch P A, Cao L F, et al. General aspects related to the corrosion of 6xxx series aluminium alloys: exploring the influence of Mg/Si ratio and Cu [J]. Corros. Sci., 2013, 76: 119
16 Clement K P. Evaluation of the effects of heat treatments on the mechanical and corrosion properties of aluminum alloy 7075 [D]. Tulsa: The University of Tulsa, 2019
17 Adams F V, Akinwamide S O, Obadele B, et al. Comparison study on the corrosion behavior of aluminum alloys in different acidic media [J]. Mater. Today: Proc., 2021, 38: 1040
18 Zaid B, Saidi D, Benzaid A, et al. Effects of pH and chloride concentration on pitting corrosion of AA6061 aluminum alloy [J]. Corros. Sci., 2008, 50: 1841
[1] 张泽群, 陈质彬, 董其娟, 邬聪, 李宗欣, 王禾祖, 吴飞, 张博威, 吴俊升. 低合金钢、不锈钢和铝镁合金在模拟深海环境中的电偶腐蚀行为研究[J]. 中国腐蚀与防护学报, 2022, 42(3): 417-424.
[2] 蔡建敏, 关蕾, 李雨. 不同表面防护处理的6016铝合金/DC01碳钢电偶腐蚀行为研究[J]. 中国腐蚀与防护学报, 2022, 42(2): 281-287.
[3] 王炳钦, 张晓莲, 雍兴跃, 周欢, 高新华. 舰船海水管系中紫铜/钢制管道耦接后电偶腐蚀的数值模拟研究[J]. 中国腐蚀与防护学报, 2022, 42(2): 200-210.
[4] 丁奕, 王力伟, 刘德运, 王昕. 低合金钢与双相不锈钢异种金属焊接接头组织和性能的研究[J]. 中国腐蚀与防护学报, 2022, 42(2): 295-300.
[5] 苏娜, 叶梦颖, 李建民, 高荣杰. ZIF-8/TiO2纳米复合材料的制备及光生阴极保护性能[J]. 中国腐蚀与防护学报, 2022, 42(2): 267-273.
[6] 刘泉兵, 刘宗德, 郭胜洋, 肖毅. 5083铝合金与30CrMnSiA钢在不同Cl-浓度中电偶腐蚀行为的研究[J]. 中国腐蚀与防护学报, 2021, 41(6): 883-891.
[7] 郑世恩, 潘应君, 张恒, 柯德庆, 杨岭, 朱星宇. 304不锈钢表面硼化物熔覆层的耐腐蚀性能研究[J]. 中国腐蚀与防护学报, 2021, 41(6): 843-848.
[8] 安易强, 王昕, 崔中雨. 硝酸钝化对304不锈钢在模拟混凝土孔隙液中点蚀的临界Cl-浓度的影响[J]. 中国腐蚀与防护学报, 2021, 41(6): 804-810.
[9] 盖喜鹏, 雷黎, 崔中雨. 304不锈钢在模拟混凝土孔隙液中的点蚀行为研究[J]. 中国腐蚀与防护学报, 2021, 41(5): 646-652.
[10] 左勇, 秦越强, 申淼, 杨新梅. Cr2+/Cr3+对FLiNaK熔盐体系电偶腐蚀抑制行为及机理研究[J]. 中国腐蚀与防护学报, 2021, 41(3): 341-345.
[11] 苍雨, 黄毓晖, 翁硕, 轩福贞. 环境变量对核电汽轮机转子钢焊接接头电偶腐蚀性能的影响[J]. 中国腐蚀与防护学报, 2021, 41(3): 318-326.
[12] 刘欣怡, 赵亚州, 张欢, 陈莉. 混凝土孔隙液中Cl-浓度对304不锈钢亚稳态点蚀的影响[J]. 中国腐蚀与防护学报, 2021, 41(2): 195-201.
[13] 张浩, 杜楠, 周文杰, 王帅星, 赵晴. 模拟海水溶液中Fe3+对不锈钢点蚀的影响[J]. 中国腐蚀与防护学报, 2020, 40(6): 517-522.
[14] 丁清苗, 秦永祥, 崔艳雨. 大气环境中飞机构件的电偶腐蚀研究[J]. 中国腐蚀与防护学报, 2020, 40(5): 455-462.
[15] 伊红伟, 胡慧慧, 陈长风, 贾小兰, 胡丽华. CO2环境下油酸咪唑啉对X65钢异种金属焊缝电偶腐蚀的抑制作用研究[J]. 中国腐蚀与防护学报, 2020, 40(2): 96-104.