Please wait a minute...
中国腐蚀与防护学报  2022, Vol. 42 Issue (2): 267-273    DOI: 10.11902/1005.4537.2021.098
  研究报告 本期目录 | 过刊浏览 |
ZIF-8/TiO2纳米复合材料的制备及光生阴极保护性能
苏娜, 叶梦颖, 李建民, 高荣杰()
中国海洋大学材料科学与工程学院 青岛 266100
Fabrication of ZIF-8/TiO2 Composite Film and Its Photogeneration Cathodic Protection Performance
SU Na, YE Mengying, LI Jianmin, GAO Rongjie()
School of Materials Science and Engineering, Ocean University of China, Qingdao 266100, China
全文: PDF(6229 KB)   HTML
摘要: 

采用逐步生长法在TiO2纳米管阵列上负载ZIF-8纳米颗粒制得ZIF-8/TiO2纳米复合材料。通过XRD、SEM、UV-vis DRS等手段对材料的结构、形貌和光响应进行表征,并在开/闭可见光下对材料进行光电化学测试。结果表明,ZIF-8/TiO2纳米复合材料光吸收扩展到可见光区;将其作为光阳极与304不锈钢耦合后,光照条件下阴极保护电位可降至-0.92 V,比TiO2纳米管阵列降低约180 mV,且在较长时间内可对304不锈钢表现出优异的光生阴极保护性能。

关键词 光生阴极保护改性ZIF-8/TiO2304不锈钢    
Abstract

A novel ZIF-8/TiO2 nanocomposite material was prepared via stepwise growth method to deposit ZIF-8 nanoparticles on TiO2 nanotube arrays aiming to further optimize the photogeneration cathodic protection performance of TiO2 photoanode so that to improve its photoelectric conversion efficiency. The structure, morphology and light response of the prepared materials were characterized by XRD, SEM and UV-vis DRS, and the photochemical test of the materials was carried out in conditions of visible light on and off. The results show that the light absorption ability of ZIF-8/TiO2 nanocomposite material was extended into the visible region, and the cathodic protection potential of ZIF-8/TiO2 nanocomposite can be reduced to -0.92 V in condition of light on when coupled with 304 stainless steel as the photoanode, which is about 180 mV lower than that of the simple TiO2 nanotube array, and it shows excellent photogenerated cathodic protection performance for 304 stainless steel for long time.

Key wordsphotocathode protection    modified    ZIF-8/TiO2    304 stainless steel
收稿日期: 2021-05-05     
ZTFLH:  TG174  
基金资助:国家自然科学基金山东省联合基金(U1706221)
通讯作者: 高荣杰     E-mail: dmh206@ouc.edu.cn
Corresponding author: GAO Rongjie     E-mail: dmh206@ouc.edu.cn
作者简介: 苏娜,女,1996年生,硕士生

引用本文:

苏娜, 叶梦颖, 李建民, 高荣杰. ZIF-8/TiO2纳米复合材料的制备及光生阴极保护性能[J]. 中国腐蚀与防护学报, 2022, 42(2): 267-273.
Na SU, Mengying YE, Jianmin LI, Rongjie GAO. Fabrication of ZIF-8/TiO2 Composite Film and Its Photogeneration Cathodic Protection Performance. Journal of Chinese Society for Corrosion and protection, 2022, 42(2): 267-273.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2021.098      或      https://www.jcscp.org/CN/Y2022/V42/I2/267

图1  一次阳极氧化且超声清洗后Ti基底,TNAs和ZIF-8/TiO2纳米复合材料的SEM形貌及70Z/T的EDS谱
图2  TNAs、70Z/T纳米复合材料的XRD谱及红外谱
图3  70Z/T纳米复合材料的XPS图谱
图4  TNAs及ZIF-8/TiO2纳米复合材料的紫外-可见光吸收谱和相应的Tauc曲线图
图5  间歇可见光下ZIF-8/TiO2纳米复合材料光电流密度-时间曲线
图6  间歇可见光下ZIF-8/TiO2耦合304 不锈钢电极的电位变化及70Z/T电位长期稳定性测试
图7  模拟太阳光下ZIF-8/TiO2耦合304不锈钢电极的极化曲线
图8  模拟太阳光下ZIF-8/TiO2的电化学阻抗谱的Nyquist图及等效电路图
SampleRs / ΩCdl / F·cm-2Rct / kΩ·cm2
304 stainless steel58.996.490×10-525.42
TNAs14.642.338×10-46.018
50Z/T16.612.796×10-42.392
70Z/T15.612.288×10-41.836
90Z/T20.642.150×10-45.649
表1  电化学阻抗Nyquist谱电路拟合参数
图9  光生阴极保护原理示意图
1 Guo Q, Zhou C Y, Ma Z B, et al. Fundamentals of TiO2 photocatalysis: concepts, mechanisms, and challenges [J]. Adv. Mater., 2019, 31: 1901997
2 Xie X, Liu L, Wang F H. Effect of preparation and surface modification of TiO2 on its photoelectrochemical cathodic protection performance [J]. J. Chin. Soc. Corros. Prot., 2020, 40: 123
2 解璇, 刘莉, 王福会. TiO2的制备及表面修饰工艺对其光电化学阴极保护性能的影响 [J]. 中国腐蚀与防护学报, 2020, 40: 123
3 Liao T. Study on the Photogenerated cathodic protection of TiO2 nanocomposites for metals [D]. Qingdao: The Institute of Oceanology, Chinese Academy of Sciences, 2018
3 廖彤. TiO2纳米复合材料对金属光生阴极保护性能研究 [D]. 青岛: 中国科学院海洋研究所, 2018
4 Liu Z Q, Tang P, Liu X S, et al. Truncated titanium/semiconductor cones for wide-band solar absorbers [J]. Nanotechnology, 2019, 30: 305203
5 Bu Y Y, Ao J P. A review on photoelectrochemical cathodic protection semiconductor thin films for metals [J]. Green Energy Environ., 2017, 2: 331
6 Xu H M, Liu W, Cao L X, et al. Preparation of ZnO/TiO2 composite film on 304 stainless steel and its photo-cathodic protection propertIes [J]. J. Chin. Soc. Corros. Prot., 2014, 34: 507
6 许洪梅, 柳伟, 曹立新等. 304不锈钢表面ZnO/TiO2复合薄膜的制备与光生阴极防腐蚀性能研究 [J]. 中国腐蚀与防护学报, 2014, 34: 507
7 Zhang Y B. Prepration and characterization of anatase TiO2 thin film via hydrothermal reaction [J]. New Chem. Mater., 2016, 44(12): 97
7 张一兵. 锐钛矿型TiO2薄膜的水热法制备及其表征 [J]. 化工新型材料, 2016, 44(12): 97
8 Qiu P, Yang L J, Song Y, et al. Influence of DMF modified TiO2 film on the photogenerated cathodic protection behavior [J]. J. Chin. Soc. Corros. Prot., 2018, 38: 289
8 邱萍, 杨连捷, 宋玉等. 添加DMF对TiO2薄膜光生阴极保护性能影响研究 [J]. 中国腐蚀与防护学报, 2018, 38: 289
9 Cen C L, Zhang Y B, Liang C P, et al. Numerical investigation of a tunable metamaterial perfect absorber consisting of two-intersecting graphene nanoring arrays [J]. Phys. Lett., 2019, 383A: 3030
10 Chen B L, Yang Z X, Zhu Y Q, et al. Zeolitic imidazolate framework materials: Recent progress in synthesis and applications [J]. J. Mater. Chem., 2014, 2A: 16811
11 Subudhi S, Rath D, Parida K M. A mechanistic approach towards the photocatalytic organic transformations over functionalised metal organic frameworks: A review [J]. Catal. Sci. Technol., 2018, 8: 679
12 Sun M H, Huang S Z, Chen H L, et al. Applications of hierarchically structured porous materials from energy storage and conversion, catalysis, photocatalysis, adsorption, separation, and sensing to biomedicine [J]. Chem. Soc. Rev., 2016, 45: 3479
13 Zhang C L, Guo D, Shen T Y, et al. Titanium dioxide/magnetic metal-organic framework preparation for organic pollutants removal from water under visible light [J]. Colloid. Surf., 2020, 589A: 124484
14 Kampouri S, Ireland C P, Valizadeh B, et al. Mixed-phase MOF-derived titanium dioxide for photocatalytic hydrogen evolution: the impact of the templated morphology [J]. ACS Appl. Energy Mater., 2018, 1: 6541
15 Zhou A W, Dou Y B, Zhou C, et al. A leaf-branch TiO2/carbon@MOF composite for selective CO2 photoreduction [J]. Appl. Catal., 2020, 264B: 118519
16 Nguyen T M H, Bark C W. Synthesis of cobalt-doped TiO2 based on metal-organic frameworks as an effective electron transport material in perovskite solar cells [J]. ACS Omega, 2020, 5: 2280
17 Zhang Y Y, Zhang J N, Li G, et al. Metal-organic frameworkderived porous TiO2 nanotablets with sensitive and selective ethanol sensing [J]. J. Mater. Sci. Mater. Electron., 2019, 30: 17899
18 Zeng X, Huang L Q, Wang C N, et al. Sonocrystallization of ZIF‑8 on electrostatic spinning TiO2 nanofibers surface with enhanced photocatalysis property through synergistic effect [J]. ACS Appl. Mater. Interfaces, 2016, 8: 20274
19 Zhang Y J, Li Q Z, Liu C X, et al. The promoted effect of a metal-organic frameworks (ZIF-8) on Au/TiO2 for CO oxidation at room temperature both in dark and under visible light irradiation [J]. Appl. Catal., 2018, 224B: 294
20 Cardoso J C, Stulp S, de Brito J F, et al. MOFs based on ZIF-8 deposited on TiO2 nanotubes increase the surface adsorption of CO2 and its photoelectrocatalytic reduction to alcohols in aqueous media [J]. Appl. Catal., 2018, 225B: 563
21 Zhang M, Shang Q G, Wan Y Q, et al. Self-template synthesis of double-shell TiO2@ZIF-8 hollow nanospheres via sonocrystallization with enhanced photocatalytic activities in hydrogen generation [J]. Appl. Catal., 2019, 241B: 149
22 Tang Y W, Dubbeldam D, Guo X M, et al. Efficient separation of ethanol-methanol and ethanol-water mixtures using ZIF-8 supported on a hierarchical porous mixed-oxide substrate [J]. ACS Appl. Mater. Interfaces, 2019, 11: 21126
23 Sheng H B, Chen D Y, Li N J, et al. Urchin-inspired TiO2@MIL-101 double-shell hollow particles: Adsorption and highly efficient photocatalytic degradation of hydrogen sulfide [J]. Chem. Mater., 2017, 29: 5612
24 Umrao S, Abraham S, Theil F, et al. A possible mechanism for the emergence of an additional band gap due to a Ti-O-C bond in the TiO2-graphene hybrid system for enhanced photodegradation of methylene blue under visible light [J]. RSC Adv., 2014, 4: 59890
25 Qi X X, Shang F, Wang T, et al. In situ coupling of TiO2 (B) and ZIF-8 with enhanced photocatalytic activity via effective defect [J]. Crystengcomm, 2020, 22: 4250
26 Liao T, Ma Z, Li L L, et al. Light-generated cathodic protection properties of Fe2O3/TiO2 nanocomposites for 304 stainless steel [J]. J. Chin. Soc. Corros. Prot., 2019, 39: 36
26 廖彤, 马峥, 李蕾蕾等. Fe2O3/TiO2纳米复合材料对304不锈钢的光生阴极保护性能 [J]. 中国腐蚀与防护学报, 2019, 39: 36
27 Yuan J J, Li H D, Gao S Y, et al. A facile route to n-type TiO2-nanotube/p-type boron-doped-diamond heterojunction for highly efficient photocatalysts [J]. Chem. Commun., 2010, 46: 3119
28 Fan F Q. Effect of the seawater flow rate and static pressure on the cathode protection [D]. Qingdao: Ocean University of China, 2014
28 范丰钦. 模拟海水流速、静压力对阴极保护的影响 [D]. 青岛: 中国海洋大学, 2014
29 Franking R, Li L S, Lukowski M A, et al. Facile post-growth doping of nanostructured hematite photoanodes for enhanced photoelectrochemical water oxidation [J]. Energy Environ. Sci., 2013, 6: 500
30 Vimont A, Travert A, Bazin P, et al. Evidence of CO2 molecule acting as an electron acceptor on a nanoporous metal-organic-framework MIL-53 or Cr3+(OH)(O2C-C6H4-CO2) [J]. Chem. Commun., 2007: 3291
31 Usui H, Suzuki S, Domi Y, et al. TiO2/MnO2 composite electrode enabling photoelectric conversion and energy storage as photoelectrochemical capacitor [J]. Mater. Today Energy, 2018, 9: 229
[1] 邱盼盼, 舒小勇, 胡林丽, 杨韬, 房雨晴. Pt改性镍基高温合金铝化物涂层研究进展[J]. 中国腐蚀与防护学报, 2022, 42(2): 186-192.
[2] 李建永, 代殿宇, 钱程, 刁书磊, 刘金山, 路通鑫, 孙勇, 肖凤娟. 不锈钢表面聚苯胺纳米纤维/改性氧化石墨烯/水性环氧复合涂层的制备与防护性能研究[J]. 中国腐蚀与防护学报, 2022, 42(1): 156-162.
[3] 张赪栋, 刘斌, 石泽耀, 刘岩, 曹青敏, 蹇冬辉. 镍铝青铜合金海水腐蚀行为研究进展[J]. 中国腐蚀与防护学报, 2022, 42(1): 25-33.
[4] 郑世恩, 潘应君, 张恒, 柯德庆, 杨岭, 朱星宇. 304不锈钢表面硼化物熔覆层的耐腐蚀性能研究[J]. 中国腐蚀与防护学报, 2021, 41(6): 843-848.
[5] 丁玉康, 陈国美, 倪自丰, 刘雅玄, 钱善华, 卞达, 赵永武. 六方氮化硼改性硅烷膜耐蚀性能研究[J]. 中国腐蚀与防护学报, 2021, 41(6): 864-870.
[6] 安易强, 王昕, 崔中雨. 硝酸钝化对304不锈钢在模拟混凝土孔隙液中点蚀的临界Cl-浓度的影响[J]. 中国腐蚀与防护学报, 2021, 41(6): 804-810.
[7] 盖喜鹏, 雷黎, 崔中雨. 304不锈钢在模拟混凝土孔隙液中的点蚀行为研究[J]. 中国腐蚀与防护学报, 2021, 41(5): 646-652.
[8] 张陈扬, 刘慧丛, 韩东晓, 朱立群, 李卫平. 微米级SiC/Ni-Co-P复合镀层的制备及影响因素[J]. 中国腐蚀与防护学报, 2021, 41(5): 579-584.
[9] 刘欣怡, 赵亚州, 张欢, 陈莉. 混凝土孔隙液中Cl-浓度对304不锈钢亚稳态点蚀的影响[J]. 中国腐蚀与防护学报, 2021, 41(2): 195-201.
[10] 韩月桐, 张鹏超, 史杰夫, 李婷, 孙俊才. 质子交换膜燃料电池中TA1双极板的表面改性研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 125-130.
[11] 张浩, 杜楠, 周文杰, 王帅星, 赵晴. 模拟海水溶液中Fe3+对不锈钢点蚀的影响[J]. 中国腐蚀与防护学报, 2020, 40(6): 517-522.
[12] 白鹏凯, 许萍. 水处理领域中的绿色环保阻垢剂及其研究进展[J]. 中国腐蚀与防护学报, 2020, 40(2): 87-95.
[13] 曹京宜, 王智峤, 李亮, 孟凡帝, 刘莉, 王福会. 深海压力交变加速条件下改性石墨烯有机涂层的失效机制[J]. 中国腐蚀与防护学报, 2020, 40(2): 139-145.
[14] 师超,邵亚薇,熊义,刘光明,俞跃龙,杨志广,许传钦. 硅烷偶联剂改性磷酸锌对环氧涂层防腐性能的影响[J]. 中国腐蚀与防护学报, 2020, 40(1): 38-44.
[15] 骆鸿,高书君,肖葵,董超芳,李晓刚. 磁控溅射工艺对CrN薄膜及其腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2019, 39(5): 423-430.