|
|
深海压力交变加速条件下改性石墨烯有机涂层的失效机制 |
曹京宜1, 王智峤1, 李亮1, 孟凡帝2( ), 刘莉2, 王福会2 |
1 中国人民解放军92228部队 北京 100072 2 沈阳材料科学国家研究中心 东北大学联合研究分部 沈阳 110819 |
|
Failure Mechanism of Organic Coating with Modified Graphene Under Simulated Deep-sea Alternating Hydrostatic Pressure |
CAO Jingyi1, WANG Zhiqiao1, LI Liang1, MENG Fandi2( ), LIU Li2, WANG Fuhui2 |
1 Unit 92228, People's Liberation Army, Beijing 100072, China 2 Shenyang National Laboratory for Materials Science, Northeastern University, Shenyang 110819, China |
引用本文:
曹京宜, 王智峤, 李亮, 孟凡帝, 刘莉, 王福会. 深海压力交变加速条件下改性石墨烯有机涂层的失效机制[J]. 中国腐蚀与防护学报, 2020, 40(2): 139-145.
Jingyi CAO,
Zhiqiao WANG,
Liang LI,
Fandi MENG,
Li LIU,
Fuhui WANG.
Failure Mechanism of Organic Coating with Modified Graphene Under Simulated Deep-sea Alternating Hydrostatic Pressure. Journal of Chinese Society for Corrosion and protection, 2020, 40(2): 139-145.
链接本文:
https://www.jcscp.org/CN/10.11902/1005.4537.2019.224
或
https://www.jcscp.org/CN/Y2020/V40/I2/139
|
[1] |
Liu B. Study on the evaluation technique for the performance of anticorrosion coatings under deep sea environment [J]. Shanghai Coat., 2011, 49(5): 34
|
[1] |
(刘斌. 深海环境下防腐蚀涂料性能评价技术研究 [J]. 上海涂料, 2011, 49(5): 34)
|
[2] |
Liu B, Fang Z G, Wang H B, et al. Effect of cross linking degree and adhesion force on the anti-corrosion performance of epoxy coatings under simulated deep sea environment [J]. Prog. Org. Coat., 2013, 76: 1814
|
[3] |
Liu J, Li X B, Wang J. Effect of hydrostatic pressure on the corrosion behaviors of two low alloy steels [J]. Acta Metall. Sin., 2011, 47: 697
|
[3] |
(刘杰, 李相波, 王佳. 模拟深海压力对2种低合金钢腐蚀行为的影响 [J]. 金属学报, 2011, 47: 697)
|
[4] |
Tian W L, Liu L, Meng F D, et al. The failure behaviour of an epoxy glass flake coating/steel system under marine alternating hydrostatic pressure [J]. Corros. Sci., 2014, 86: 81
|
[5] |
Tian W L, Meng F D, Liu L, et al. The failure behaviour of a commercial highly pigmented epoxy coating under marine alternating hydrostatic pressure [J]. Prog. Org. Coat., 2015, 82: 101
|
[6] |
Meng F D, Liu L, Tian W L, et al. The influence of the chemically bonded interface between fillers and binder on the failure behaviour of an epoxy coating under marine alternating hydrostatic pressure [J]. Corros. Sci., 2015, 101: 139
|
[7] |
Liu Y, Wang J W, Liu L, et al. Study of the failure mechanism of an epoxy coating system under high hydrostatic pressure [J]. Corros. Sci., 2013, 74: 59
|
[8] |
Schriver M, Regan W, Gannett W J, et al. Graphene as a long-term metal oxidation barrier: Worse than nothing [J]. ACS Nano, 2013, 7: 5763
|
[9] |
Fauzi F, Suhendar H, Kusumaatmaja A, et al. A simple method to examine room-temperature corrosion of graphene-coated copper foil after stored for 2.5 years [J]. Mater. Res. Express, 2018, 5: 105016
|
[10] |
Xu X Z, Yi D, Wang Z C, et al. Greatly enhanced anticorrosion of Cu by commensurate graphene coating [J]. Adv. Mater., 2018, 30: 1702944.
|
[11] |
Ding R, Li W H, Wang X, et al. A brief review of corrosion protective films and coatings based on graphene and graphene oxide [J]. J. Alloy. Compd., 2018, 764: 1039
|
[12] |
Mo M T, Zhao W J, Chen Z F, et al. Excellent tribological and anti-corrosion performance of polyurethane composite coatings reinforced with functionalized graphene and graphene oxide nanosheets [J]. RSC Adv., 2015, 5: 56486
|
[13] |
Yu Z X, Di H H, Ma Y, et al. Fabrication of graphene oxide-alumina hybrids to reinforce the anti-corrosion performance of composite epoxy coatings [J]. Appl. Surf. Sci., 2015, 351: 986
|
[14] |
Chang C H, Huang T C, Peng C W, et al. Novel anticorrosion coatings prepared from polyaniline/graphene composites [J]. Carbon, 2012, 50: 5044
|
[15] |
Lin H C, Li M C. Corrosion process for metals beneath coating [J]. Corros. Sci. Prot. Technol., 2002, 14: 180
|
[15] |
(林海潮, 李谋成. 涂层下金属的腐蚀过程 [J]. 腐蚀科学与防护技术, 2002, 14: 180)
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|