Please wait a minute...
中国腐蚀与防护学报  2020, Vol. 40 Issue (2): 139-145    DOI: 10.11902/1005.4537.2019.224
  研究报告 本期目录 | 过刊浏览 |
深海压力交变加速条件下改性石墨烯有机涂层的失效机制
曹京宜1, 王智峤1, 李亮1, 孟凡帝2(), 刘莉2, 王福会2
1 中国人民解放军92228部队 北京 100072
2 沈阳材料科学国家研究中心 东北大学联合研究分部 沈阳 110819
Failure Mechanism of Organic Coating with Modified Graphene Under Simulated Deep-sea Alternating Hydrostatic Pressure
CAO Jingyi1, WANG Zhiqiao1, LI Liang1, MENG Fandi2(), LIU Li2, WANG Fuhui2
1 Unit 92228, People's Liberation Army, Beijing 100072, China
2 Shenyang National Laboratory for Materials Science, Northeastern University, Shenyang 110819, China
全文: PDF(3438 KB)   HTML
摘要: 

采用可控的化学氧化法制备出功能化石墨烯,最终实现石墨烯与三乙烯四胺的接枝反应。结果表明:石墨烯经化学修饰后其片层结构更平滑舒展。添加改性石墨烯的涂层在致密性、附着力等方面的性能明显提高。化学改性通过提高石墨烯的分散性及其与环氧树脂基料的相容性,减少涂层的内部缺陷,涂层结构更加致密,有效阻挡了腐蚀介质的扩散。同时,与环氧树脂形成紧密结合的化学结合界面,延缓了交变压力对该界面的破坏作用,从而延长涂层在交变压力条件下的使役寿命。

关键词 改性石墨烯有机涂层压力交变失效机制    
Abstract

Functionalized graphene was firstly prepared by controllable chemical oxidation method, thus grafting reaction between graphene and triethylenetetramine could be realized. The results showed that the structure of graphene sheet is smoother after chemical modification. The properties such as compactness and adhesion of the epoxy resin coating were obviously improved due to the proper incorporation of the modified graphene. Chemical modification can also improve the graphene's dispersibility in and compatibility with epoxy resin binder, as a result, internal defects of the coating can be reduced, which makes the coating much compact and thus effectively prevents the inward migration of corrosive medium. In addition, chemically-bonded interfaces between the modified graphene and epoxy resin can be formed, which delays the destruction of the interface by alternating hydrostatic pressure, and thus prolongs the service life of the coating under this condition.

Key wordsmodified graphene    organic coating    alternating hydrostatic pressure    failure mechanism
收稿日期: 2019-05-08     
ZTFLH:  TG174  
通讯作者: 孟凡帝     E-mail: fandimeng@mail.neu.edu.cn
Corresponding author: MENG Fandi     E-mail: fandimeng@mail.neu.edu.cn
作者简介: 曹京宜,女,1972年生,研究员

引用本文:

曹京宜, 王智峤, 李亮, 孟凡帝, 刘莉, 王福会. 深海压力交变加速条件下改性石墨烯有机涂层的失效机制[J]. 中国腐蚀与防护学报, 2020, 40(2): 139-145.
Jingyi CAO, Zhiqiao WANG, Liang LI, Fandi MENG, Li LIU, Fuhui WANG. Failure Mechanism of Organic Coating with Modified Graphene Under Simulated Deep-sea Alternating Hydrostatic Pressure. Journal of Chinese Society for Corrosion and protection, 2020, 40(2): 139-145.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2019.224      或      https://www.jcscp.org/CN/Y2020/V40/I2/139

图1  功能化后石墨烯的红外光谱图
图2  不同时间条件下改性和未改性石墨烯粉末在有机溶剂中的分散稳定性
图3  改性及未改性石墨烯粉末的SEM像
图4  交变压力条件下未改性石墨烯和改性石墨烯涂层的吸水动力学曲线
图5  不同压力条件下石墨烯有机涂层的湿态附着力随浸泡时间的变化
图7  改性石墨烯有机涂层在交变压力下浸泡不同时间的Nyquist图
图6  未改性石墨烯有机涂层在交变压力下浸泡不同时间的Nyquist图
图8  两种有机涂层的涂层电阻Rc随浸泡时间的变化
图9  交变压力下两种涂层失效过程示意图
[1] Liu B. Study on the evaluation technique for the performance of anticorrosion coatings under deep sea environment [J]. Shanghai Coat., 2011, 49(5): 34
[1] (刘斌. 深海环境下防腐蚀涂料性能评价技术研究 [J]. 上海涂料, 2011, 49(5): 34)
[2] Liu B, Fang Z G, Wang H B, et al. Effect of cross linking degree and adhesion force on the anti-corrosion performance of epoxy coatings under simulated deep sea environment [J]. Prog. Org. Coat., 2013, 76: 1814
[3] Liu J, Li X B, Wang J. Effect of hydrostatic pressure on the corrosion behaviors of two low alloy steels [J]. Acta Metall. Sin., 2011, 47: 697
[3] (刘杰, 李相波, 王佳. 模拟深海压力对2种低合金钢腐蚀行为的影响 [J]. 金属学报, 2011, 47: 697)
[4] Tian W L, Liu L, Meng F D, et al. The failure behaviour of an epoxy glass flake coating/steel system under marine alternating hydrostatic pressure [J]. Corros. Sci., 2014, 86: 81
[5] Tian W L, Meng F D, Liu L, et al. The failure behaviour of a commercial highly pigmented epoxy coating under marine alternating hydrostatic pressure [J]. Prog. Org. Coat., 2015, 82: 101
[6] Meng F D, Liu L, Tian W L, et al. The influence of the chemically bonded interface between fillers and binder on the failure behaviour of an epoxy coating under marine alternating hydrostatic pressure [J]. Corros. Sci., 2015, 101: 139
[7] Liu Y, Wang J W, Liu L, et al. Study of the failure mechanism of an epoxy coating system under high hydrostatic pressure [J]. Corros. Sci., 2013, 74: 59
[8] Schriver M, Regan W, Gannett W J, et al. Graphene as a long-term metal oxidation barrier: Worse than nothing [J]. ACS Nano, 2013, 7: 5763
[9] Fauzi F, Suhendar H, Kusumaatmaja A, et al. A simple method to examine room-temperature corrosion of graphene-coated copper foil after stored for 2.5 years [J]. Mater. Res. Express, 2018, 5: 105016
[10] Xu X Z, Yi D, Wang Z C, et al. Greatly enhanced anticorrosion of Cu by commensurate graphene coating [J]. Adv. Mater., 2018, 30: 1702944.
[11] Ding R, Li W H, Wang X, et al. A brief review of corrosion protective films and coatings based on graphene and graphene oxide [J]. J. Alloy. Compd., 2018, 764: 1039
[12] Mo M T, Zhao W J, Chen Z F, et al. Excellent tribological and anti-corrosion performance of polyurethane composite coatings reinforced with functionalized graphene and graphene oxide nanosheets [J]. RSC Adv., 2015, 5: 56486
[13] Yu Z X, Di H H, Ma Y, et al. Fabrication of graphene oxide-alumina hybrids to reinforce the anti-corrosion performance of composite epoxy coatings [J]. Appl. Surf. Sci., 2015, 351: 986
[14] Chang C H, Huang T C, Peng C W, et al. Novel anticorrosion coatings prepared from polyaniline/graphene composites [J]. Carbon, 2012, 50: 5044
[15] Lin H C, Li M C. Corrosion process for metals beneath coating [J]. Corros. Sci. Prot. Technol., 2002, 14: 180
[15] (林海潮, 李谋成. 涂层下金属的腐蚀过程 [J]. 腐蚀科学与防护技术, 2002, 14: 180)
[1] 邓三喜, 闫小宇, 柴柯, 吴进怡, 史洪微. 假单胞菌对聚硅氧烷树脂清漆涂层分解及防腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2018, 38(4): 326-332.
[2] 桂琪, 郑大江, 宋光铃. 醇酸清漆保护性的电化学加速评价[J]. 中国腐蚀与防护学报, 2018, 38(3): 274-282.
[3] 董赋,胡裕龙,赵欣,王智峤. 静水压力对10CrNi3MoV钢腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2017, 37(2): 183-188.
[4] 金小寒,胡吉明,张鉴清. 含有机物水溶液电解体系中的阳极材料及其失效特性[J]. 中国腐蚀与防护学报, 2015, 35(3): 199-204.
[5] 苏景新 白 云 关庆丰 邹 阳. 飞机蒙皮结构表面涂层失效的电化学阻抗分析[J]. 中国腐蚀与防护学报, 2013, 33(3): 251-256.
[6] 张伟,王佳,赵增元,刘学庆. 电化学阻抗谱对比研究连续浸泡和干湿循环条件下有机涂层的劣化过程[J]. 中国腐蚀与防护学报, 2011, 31(5): 329-335.
[7] 赵增元; 王佳 . 有机涂层阴极剥离作用研究进展[J]. 中国腐蚀与防护学报, 2008, 28(2): 116-120 .
[8] 李瑛; 屈力; 王福会; 邵忠宝 . TiN涂层电化学腐蚀行为研究Ⅱ.添加Al对TiN涂层保护性能与失效机制的影响[J]. 中国腐蚀与防护学报, 2003, 23(3): 134-138 .
[9] 李瑛; 王福会; 邵忠宝 . TiN涂层电化学腐蚀行为研究Ⅰ.TiN涂层的保护性能与失效机制[J]. 中国腐蚀与防护学报, 2003, 23(2): 65-69 .
[10] 胡吉明; 张鉴清; 谢德明 . 水在有机涂层中的传输Ⅱ 复杂的实际传输过程[J]. 中国腐蚀与防护学报, 2002, 22(6): 371-374 .
[11] 胡吉明; 张鉴清; 谢德明 . 水在有机涂层中的传输ⅠFick扩散过程[J]. 中国腐蚀与防护学报, 2002, 22(5): 311-315 .