Please wait a minute...
中国腐蚀与防护学报  2020, Vol. 40 Issue (2): 87-95    DOI: 10.11902/1005.4537.2019.247
  综合评述 本期目录 | 过刊浏览 |
水处理领域中的绿色环保阻垢剂及其研究进展
白鹏凯, 许萍()
北京建筑大学 城市雨水系统与水环境教育部重点实验室 水环境国家级实验教学示范中心 北京 100044
Synthesis and Modification of Green Environment-friendly Scale Inhibitors in the Field of Water Treatment: the State-of-art Technological Advances
BAI Pengkai, XU Ping()
National Demonstration Center for Experimental Water Environment Education, Key Laboratory of Urban Stormwater System and Water Environment of Ministry of Education, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
全文: PDF(2830 KB)   HTML
摘要: 

对目前绿色环保阻垢剂中研究和应用最为广泛的聚环氧琥珀酸 (PESA) 和聚天冬胺酸 (PASP) 及其衍生物、植物提取物及其衍生物、以及其他新型绿色环保阻垢剂-碳纳米粒子阻垢剂在水处理领域中的合成、改性进展以及技术难点进行综述,并分别对其未来的发展方向提出建议。

关键词 聚天冬胺酸 (PASP)聚环氧琥珀酸 (PESA)化学改性植物提取物碳纳米粒子    
Abstract

Scaling is universal phenomenon in the field of industrial water, and the most cost-effective way to control scaling is chemical scale inhibition. In this paper, the synthesis, modification, application progress and technical difficulties are reviewed for the green environment-friendly scale inhibitors, namely, polyepoxysuccinic acid (PESA) and polyaspartic acid (PASP) and their derivatives, plant extracts and their derivatives, as well as other new type of inhibitors such as carbon nanoparticle scale inhibitor in the field of water treatment. Finally, their future development directions are proposed respectively.

Key wordspolyaspartic acid (PASP)    polyepoxysuccinic acid (PESA)    chemical modification    plant extracts    carbon nanoparticles
收稿日期: 2019-12-03     
ZTFLH:  TG174.42  
基金资助:国家自然科学基金(51578035);北京建筑大学科研项目(ZC02 and ZC06)
通讯作者: 许萍     E-mail: xuping@bucea.edu.cn
Corresponding author: XU Ping     E-mail: xuping@bucea.edu.cn
作者简介: 白鹏凯,男,1995年生,硕士生

引用本文:

白鹏凯, 许萍. 水处理领域中的绿色环保阻垢剂及其研究进展[J]. 中国腐蚀与防护学报, 2020, 40(2): 87-95.
Pengkai BAI, Ping XU. Synthesis and Modification of Green Environment-friendly Scale Inhibitors in the Field of Water Treatment: the State-of-art Technological Advances. Journal of Chinese Society for Corrosion and protection, 2020, 40(2): 87-95.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2019.247      或      https://www.jcscp.org/CN/Y2020/V40/I2/87

图1  含多种官能团阻垢剂的阻垢机理图[8]
Functional groupScale inhibition performanceBiodegradable
—COOHHydrophilic groups, improve the anti-scale of CaCO3 and CaSO4, can convert amorphously deposited Zn(OH)2 into Zn2+, and improve the zinc stabilization ability[9]Easy to biodegrade
—SO3HStrong polar hydrophilic group, improve the anti-scale of Ca3(PO4)2 and CaCO3, improve the dispersion performance of Fe2O3, have threshold effect, can reduce the amount of scale inhibitorHard to biodegrade
—OHHydrophobic group, improve the anti-scale of Ca3(PO4)2 and CaCO3, can convert amorphously deposited Zn(OH)2 into Zn2+Easy to biodegrade

—NH2,

—CONH2

Polar hydrophilic groups, improve the anti-scale of CaCO3, and increase the dispersion ability of Fe2O3[10], and turning calcite into thermodynamically unstable vaterite

Easy to biodegrade,

do not promote microbial growth in water

—PO3H2Hydrophilic groups, improve the anti-scale of CaCO3[11]Hard to biodegrade
—CHOCarbonyl group could participate the Mannich reaction due to its active chemical property, and the carbonyl group containing the lone pair of electrons can be chelated with metal ionsEasy to biodegrade
表1  特定功能基团及其相应的阻垢分散性[9,10,11]
DerivativeFunctional groupSynthesis conditionAnti-Scale performanceRef.
Polyaspartic acid/4‐ (2‐amin-oethyl) morpholine graft copolymer (PASP/AEM)—C—O—C—,—COOHm (PSI):m (AEM)=1:1.05

When the dosage of PASP/AEM is 10.0 mg/L, anti Ca3(PO4)2

scale rate is 100%, when C (PASP/AEM) =56.0 mg/L,

the transmittance of Fe2O3 is 66%

[15]
ESA/AMPS—C(=O)—NH

When the dosage of ESA/AMPS is 35 mg/L, anti Ca3(PO4)2

scale rate is 100%, and the transmittance of Fe2O3 is 57%

[16]
Polyaspartic acid derivative(PASPTU)—OH,—CONH2PSI:threonine:urea=1:0.2:0.8

When the dosage of PASPTU is 8 mg/L, anti Ca3(PO4)2

scale rate is 100%

[17]
PASP/Urea—CONH2,—NH2

Anti CaCO3 scale rate is 90%, anti Ca3(PO4)2 scale rate is 90%,

and anti CaSO4 scale rate is 97%

[18]
L-cysteine modified polyepoxysuccinic acid (LCY-PESA)—SH,—CONH2m (PESA):m (LCY) =10:1

When the dosage of LCY-PES is 6 mg/L, anti-scale rate is 94.6%,

and the transmittance of Fe2O3 is 61.5%, which is lower than

PESA about 20%. At the same time, LCY-PESA has

excellent biodegradability

[19]
表2  PESA和PASP衍生物的阻垢分散性能[15,16,17,18,19]
Plant extractDosagemg/LReaction conditionInhibitionrateRef.
Polycitric acid (PCA)2.5C (Ca2+)=C (SO42-)=2040 mg/L>90%[29]
25C (Ca2+)=C (SO42-)=2040 mg/L98%
Poly (citric acid) St-g-PAA (e); St:AA=1:140Initiator 0.9 g; the grafting rate 97%, graft chain average 9; graft chain average length 112, C (Ca2+)=200 mg/L, C (CO32-)=305 mg/L95.79%[30]
Extract of tobacco rob140Artificial seawater, 70~80 ℃91.7%~100%[31]
Extract of bistorta officinalis1000Circulating cooling water, C (Ca2+, Mg2+)=592 mg/L, 3 h, 70 ℃, pH=8.599.5%[32]
Extract of Mazuj gall1000

Circulating cooling water, C (Ca2+)=360 mg/L, C (Mg2+)=250 mg/L,

3 h, 70 ℃, pH=8.5

97.2%[33]
表3  典型植物提取物的阻垢性能[29,30,31,32,33]
图2  淀粉-接枝-聚 (丙烯酸) (St-g-PAA) 的阻垢机理图[34]
图3  空白和含有100 mg/L碳纳米颗粒的结垢溶液中形成的CaCO3晶体的SEM像[41]
图4  不同CCQDs投加量下的硫酸钙垢的XRD谱[45]
图5  羧基碳量子点 (CCQDs) 阻垢剂对CaSO4阻垢机理图[45]
[1] Mizrahi G, Wong K, Lu X Y, et al. Ultrasonic sensor control of flow reversal in RO desalination. Part 2: Mitigation of calcium carbonate scaling [J]. J. Membr. Sci., 2012, 419/420: 9
[2] Liu F, Lu X H, Yang W, et al. Optimizations of inhibitors compounding and applied conditions in simulated circulating cooling water system [J]. Desalination, 2013, 313: 18
[3] Younes A A, El-Maghrabi H H, Ali H R. Novel polyacrylamide-based solid scale inhibitor [J]. J. Hazard. Mater., 2017, 334: 1
[4] Kühnel D, Nickel C. The OECD expert meeting on ecotoxicology and environmental fate-Towards the development of improved OECD guidelines for the testing of nanomaterials [J]. Sci. Total Environ., 2014, 472: 347
[5] Yin Y M, Zhang Y J, Cui J F, et al. Study on calcium scale inhibition and biodegradation of polyepoxysuccinic acid derivatives [J]. Ind. Water Treat., 2019, 39(8): 41
[5] (尹一铭, 张一江, 崔继方等. 聚环氧琥珀酸衍生物阻钙垢性能及生物降解性研究 [J]. 工业水处理, 2019, 39(8): 41)
[6] Zhao X L, Liu J N, Liu L J, et al. The study progress in modified and compounding corrosion & scale inhibitors [J]. Appl. Chem. Ind., 2015, (2): 362
[6] (赵希林, 刘继宁, 刘丽娟等. 阻垢缓蚀剂的改性和复配研究进展 [J]. 应用化工, 2015, (2): 362)
[7] Li J B, Tang M J, Ye Z R, et al. Scale formation and control in oil and gas fields: A review [J]. J. Disper. Sci. Technol., 2017, 38: 661
[8] Xiao J. Preparation and Study on the mechanism of a new type of corrosion and scale inhibitor without phosphorus [D]. Wuhan: Wuhan University of Technology, 2018
[8] (肖静. 一种新型无磷缓蚀阻垢剂的研制及其机理研究 [D]. 武汉: 武汉理工大学, 2018)
[9] Haghtalab A, Kamali M J, Shahrabadi A. Prediction mineral scale formation in oil reservoirs during water injection [J]. Fluid Phase Equilib., 2014, 373: 43
[10] Liu X H, Wang X Y, Sun C Y, et al. Synthesis and scale inhibition performance of modified polyethylene succinic acid derivatives [J]. J. Funct. Mater., 2015, 46: 13048
[10] (柳鑫华, 王晓禹, 孙彩云等. 改性聚环氧琥珀酸衍生物的合成与阻垢性能 [J]. 功能材料, 2015, 46: 13048)
[11] Yu J L, Wang Z K, Huo R, et al. Inhibition performances and mechanisms of CaCO3 scale inhibitors under alkalescent conditions [J]. Oilfield Chem., 2017, 34: 699
[11] (余吉良, 王志坤, 霍然等. 弱碱环境中碳酸钙垢阻垢剂的阻垢性能与阻垢机理 [J]. 油田化学, 2017, 34: 699)
[12] Liu X H, Wang M Y, Jia J X, et al. Synthesis and scale corrosion performance of modified polyepoxy succinic acid by itaconic acid [J]. Surf. Technol., 2019, 48(3): 168
[12] (柳鑫华, 王孟依, 贾静娴等. 衣康酸改性聚环氧琥珀酸的合成及其阻垢缓蚀性能的研究 [J]. 表面技术, 2019, 48(3): 168)
[13] Gao M L, Li H H, Zhang L H, et al. Modification of polyepox-ysuccinic acid and its scale inhibition and dispersion performances [J]. Mod. Chem. Ind., 2016, 36(9): 67
[13] (高美玲, 李海花, 张利辉等. 聚环氧琥珀酸的改性及其阻垢分散性能研究 [J]. 现代化工, 2016, 36(9): 67)
[14] Chen J X, Xu L H, Han J, et al. Synthesis of modified polyaspartic acid and evaluation of its scale inhibition and dispersion capacity [J]. Desalination, 2015, 358: 42
[15] Shi S C, Li D Y, Chai C X, et al. Synthesis of a polyaspartic acid/4-(2-aminoethyl) morpholine graft copolymer and evaluation of its scale and corrosion inhibition performance [J]. Polym. Adv. Technol., 2018, 29: 2838
[16] Bai X, Li H H, Zhang L H, et al. Study on scale inhibition performance and mechanism of ESA/AMPS copolymer [J]. Technol. Water Treat., 2016, 42(4): 51
[16] (白雪, 李海花, 张利辉等. ESA/AMPS共聚物阻垢性能与机理研究 [J]. 水处理技术, 2016, 42(4): 51)
[17] Zhang Y, Yin H Q, Zhang Q S, et al. A novel polyaspartic acid derivative with multifunctional groups for scale inhibition application [J]. Environ. Technol., 2018, 39: 843
[18] Zhang Y, Yin H Q, Zhang Q S, et al. Synthesis and charact-erization of novel polyaspartic acid/urea graft copolymer with acylamino group and its scale inhibition performance [J]. Desali-nation, 2016, 395: 92
[19] Zhang Y J, Liu X H, Chen Z H, et al. Synthesis of L-cysteine modified polyepoxysuccinic acid and evaluation of its inhibition on scale deposition and corrosion [J]. CIESC J., 2016, 67: 4344
[19] (张一江, 柳鑫华, 陈智慧等. L-半胱氨酸改性聚环氧琥珀酸的合成及其阻垢缓蚀性能 [J]. 化工学报, 2016, 67: 4344)
[20] Feng J Y, Gao L J, Wen R Z, et al. Fluorescent polyaspartic acid with an enhanced inhibition performance against calcium phosphate [J]. Desalination, 2014, 345: 72
[21] Xia M Z, Lei W, Dai L H, et al. Study of the mechanism of phosphonate scale inhibitors againist calcium carbonate scale [J]. Acta Chim. Sin., 2010, 68: 143
[21] (夏明珠, 雷武, 戴林宏等. 膦系阻垢剂对碳酸钙阻垢机理的研究 [J]. 化学学报, 2010, 68: 143)
[22] Zhao J P. Study on scale inhibition and biodegradability of polyas-partic acid graft copolymer [J]. Hebei Chem. Eng. Ind., 2010, 33(2): 2
[22] (赵军平. 聚天冬氨酸接枝共聚物的阻垢分散性及可生物降解性研究 [J]. 煤炭与化工, 2010, 33(2): 2)
[23] Chaussemier M, Pourmohtasham E, Gelus D, et al. State of art of natural inhibitors of calcium carbonate scaling. A review article [J]. Desalination, 2015, 356: 47
[24] Guo X R, Qiu F X, Dong K, et al. Scale inhibitor copolymer modified with oxidized starch: synthesis and performance on scale inhibition [J]. Polym.-Plast. Technol. Eng., 2013, 52: 261
[25] Tao X, Li K, Yan H, et al. Simultaneous removal of acid green 25 and mercury ions from aqueous solutions using glutamine modified chitosan magnetic composite microspheres [J]. Environ. Pollut., 2016, 209: 21
[26] Wang Y W, Li A M, Yang H. Effects of substitution degree and molecular weight of carboxymethyl starch on its scale inhibition [J]. Desalination, 2017, 408: 60
[27] Huang M, Liu Z Z, Li A M, et al. Dual functionality of a graft starch flocculant: Flocculation and antibacterial performance [J]. J. Environ. Manage., 2017, 196: 63
[28] Du Q, Wang Y W, Li A M, et al. Scale-inhibition and flocculation dual-functionality of poly (acrylic acid) grafted starch [J]. J. Environ. Manage., 2018, 210: 273
[29] Zhao Y Z, Jia L L, Liu K Y, et al. Inhibition of calcium sulfate scale by poly (citric acid) [J]. Desalination, 2016, 392: 1
[30] Yu W, Wang Y W, Li A M, et al. Evaluation of the structural morphology of starch-graft-poly(acrylic acid) on its scale-inhibit-ion efficiency [J]. Water Res., 2018, 141: 86
[31] Wang H F, Gao M D, Guo Y, et al. A natural extract of tobacco rob as scale and corrosion inhibitor in artificial seawater [J]. Desali-nation, 2016, 398: 198
[32] Mohammadi Z, Rahsepar M. The use of green Bistorta Officinalis extract for effective inhibition of corrosion and scale formation problems in cooling water system [J]. J. Alloy. Compd., 2019, 770: 669
[33] Mohammadi Z, Rahsepar M. Characterization of Mazuj galls of Quercus infectoria tree as green corrosion and scale inhibitor for effective treatment of cooling water systems [J]. Res. Chem. Intermed., 2018, 44: 2139
[34] Wang Y W, Li A M, Yang H. Effects of substitution degree and molecular weight of carboxymethyl starch on its scale inhibition [J]. Desalination, 2017, 408: 60
[35] De A Macedo R G M, do N Marques N, Paulucci L C S, et al. Water-soluble carboxymethylchitosan as green scale inhibitor in oil wells [J]. Carbohydr. Polym., 2019, 215: 137
[36] Yu W, Choi S U S. The role of interfacial layers in the enhanced thermal conductivity of nanofluids: A renovated Hamilton-Crosser model [J]. J. Nanopart. Res., 2004, 6: 355361
[37] Singh S K, Energy Sarkar J. exergy and economic assessments of shell and tube condenser using hybrid nanofluid as coolant[J]. Int. Commun. Heat Mass Transf., 2018, 98: 41
[38] Wan C, Wang L T, Sha J Y, et al. Effect of carbon nanoparticles on the crystallization of calcium carbonate in aqueous solution [J]. Nanomaterials, 2019, 9: 179
[39] Hood M A, Landfester K, Muñoz-Espí R. Chitosan nanoparticles affect polymorph selection in crystallization of calcium carbonate [J]. Colloids Surf. A: Physicochem. Eng. Asp., 2018, 540: 48
[40] Kiaei Z, Haghtalab A. Experimental study of using Ca-DTPMP nanoparticles in inhibition of CaCO3 scaling in a bulk water process [J]. Desalination, 2014, 338: 84
[41] Ghorbani N. Nanotechnology enhanced squeeze treatments for eff-icient oilfield scale management [D]. Leeds, UK: University of Leeds, 2013
[42] Ghorbani N, Wilson M C T, Kapur N, et al. Adsorption of polyph-osphinocarboxylic acid (PPCA) scale inhibitor on carbon nano-tubes (CNTs): A prospective method for enhanced oilfield scale prevention [J]. J. Petrol. Sci. Eng., 2017, 150: 305
[43] Gomez V, Correas C, Barron A R. Effect of carbon nanotubes on calcium carbonate/calcium silicate phase and morphology [J]. Main Group Chem., 2017, 16: 57
[44] Namdari P, Negahdari B, Eatemadi A. Synthesis, properties and biomedical applications of carbon-based quantum dots: An updated review [J]. Biomed. Pharmacother., 2017, 87: 209
[45] Hao J, Li L Y, Zhao W W, et al. Synthesis and application of CCQDs as a novel type of environmentally friendly scale inhibitor [J]. ACS Appl. Mater. Interfaces, 2019, 11: 9277
[1] 房亚楠,秦立光,赵文杰,白琴,张昕,乌学东. 氟碳涂料在防腐领域的研发现状和发展趋势[J]. 中国腐蚀与防护学报, 2016, 36(2): 97-106.
[2] 胡融刚; 林昌健 . 电化学改性不锈钢钝化膜的XPS/SERS研究[J]. 中国腐蚀与防护学报, 2000, 20(3): 149-154 .