Please wait a minute...
中国腐蚀与防护学报  2021, Vol. 41 Issue (2): 219-225    DOI: 10.11902/1005.4537.2020.033
  研究报告 本期目录 | 过刊浏览 |
Zr含量对Mg-3Zn-1Y合金显微组织和腐蚀行为的影响
黄涛1,2, 许春香1(), 杨丽景2, 李福霞1,2, 贾庆功1, 宽军1, 张正卫1, 武晓峰1, 王中琪1,2
1.太原理工大学材料科学与工程学院 太原 030000
2.中国科学院宁波材料技术与工程研究所 中国科学院海洋新材料与应用技术重点实验室 宁波 315000
Effect of Zr Addition on Microstructure and Corrosion Behavior of Mg-3Zn-1Y Alloys
HUANG Tao1,2, XU Chunxiang1(), YANG Lijing2, LI Fuxia1,2, JIA Qinggong1, KUAN Jun1, ZHANG Zhengwei1, WU Xiaofeng1, WANG Zhongqi1,2
1.College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030000, China
2.Key Laboratory of Marine Materials and Related Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315000, China
全文: PDF(3772 KB)   HTML
摘要: 

采用传统重力铸造法制备了Mg-3Zn-1Y-xZr (x=0,0.2,0.4,0.6) 合金,并通过光学显微镜 (OM)、扫描电镜 (SEM)、失重和电化学实验研究了Zr含量对Mg-3Zn-1Y显微组织和腐蚀行为的影响。结果表明:Mg-3Zn-1Y主要由α-Mg基质和Mg3YZn6(I) 相组成,Zr的加入没有改变第二相的类型。Zr能显著细化晶粒,优化组织结构,提升合金耐腐蚀性。同时,Zr能提升合金基体腐蚀电位,减小腐蚀电流密度,抑制合金腐蚀。失重结果表明,Mg-3Zn-1Y-0.6Zr具有最佳的耐腐蚀性能,达到 (0.325±0.042) mm/a。

关键词 Zr显微组织腐蚀行为晶粒细化失重    
Abstract

Mg-3Zn-1Y-xZr (x=0, 0.2, 0.4, 0.6) alloys are prepared by traditional gravity casting. The influence of Zr amount on the microstructure and corrosion behavior of Mg-3Zn-1Y alloys is systematically investigated via optical microscope (OM), scanning electron microscope (SEM), mass loss testing and electrochemical testing. Results show that the Mg-3Zn-1Y alloy is mainly composed of α-Mg matrix and Mg3YZn6 (I) phase. The addition of Zr does not change the type of the second phase, while can remarkably refine the grains by increasing nucleation rate, optimize the structure and improve the corrosion resistance of Mg-3Zn-1Y alloys. Meanwhile, the addition of Zr can increase the corrosion potential of alloy substrate, reduce the corrosion current density, thereby decreasing the tendency of corrosion and inhibiting the corrosion. The mass loss results indicate that the Mg-3Zn-1Y-0.6Zr alloy has the best corrosion resistance with corrosion rate of (0.325±0.042) mm/a.

Key wordsZr    microstructure    corrosion behavior    grain refinement    mass loss
收稿日期: 2020-03-05     
ZTFLH:  TG27  
基金资助:国家自然科学基金(51574175);宁波科技创新2025重大专项(2019B10104)
通讯作者: 许春香     E-mail: xuchunxiang2020@126.com
Corresponding author: XU Chunxiang     E-mail: xuchunxiang2020@126.com
作者简介: 黄涛,男,1994年生,硕士生

引用本文:

黄涛, 许春香, 杨丽景, 李福霞, 贾庆功, 宽军, 张正卫, 武晓峰, 王中琪. Zr含量对Mg-3Zn-1Y合金显微组织和腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2021, 41(2): 219-225.
Tao HUANG, Chunxiang XU, Lijing YANG, Fuxia LI, Qinggong JIA, Jun KUAN, Zhengwei ZHANG, Xiaofeng WU, Zhongqi WANG. Effect of Zr Addition on Microstructure and Corrosion Behavior of Mg-3Zn-1Y Alloys. Journal of Chinese Society for Corrosion and protection, 2021, 41(2): 219-225.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2020.033      或      https://www.jcscp.org/CN/Y2021/V41/I2/219

AlloyZnYZrFeAlCuSiMnMg
Mg-2Zn-1Y3.1100.907---0.0020.0010.0010.0030.002Bal.
Mg-2Zn-1Y-0.2Zr3.0371.1020.2130.0020.0020.0020.0010.002Bal.
Mg-2Zn-1Y-0.4Zr3.3501.0340.3790.0030.0030.0010.0020.001Bal.
Mg-2Zn-1Y-0.6Zr3.9151.1980.5580.0020.0020.0020.0010.002Bal.
表1  Mg-3Zn-1Y-xZr (x=0,0.2,0.4,0.6) 合金成分
图1  不同Zr含量Mg-3Zn-1Y合金的XRD谱
图2  不同Zr含量Mg-3Zn-1Y合金金相组织
ElementmkGRF
Zr6.906.5538.30
Al-6.870.374.33
Zn-6.040.125.32
Y-3.400.501.70
Sr-3.530.0063.51
Ca-12.670.0611.91
Ce-2.860.042.75
Mn1.491.100.15
表2  各元素在镁基体中的GRF值及相关参数[10]
图3  不同Zr含量Mg-3Zn-1Y合金在Hank's溶液中腐蚀速率
图4  溶液pH随浸泡时间的变化
图5  不同Zr含量Mg-3Zn-1Y合金在Hank's溶液中浸泡240 h后的腐蚀形貌
图6  不同Zr含量Mg-3Zn-1Y合金开路电位
图7  不同Zr含量Mg-3Zn-1Y合金极化曲线
AlloysEcorr / VIcorr / μA·cm-2
Mg-3Zn-1Y-1.71429.144
Mg-3Zn-1Y-0.2Zr-1.67918.437
Mg-3Zn-1Y-0.4Zr-1.65614.531
Mg-3Zn-1Y-0.6Zr-1.5859.325
表3  极化曲线拟合结果
图8  Mg-3Zn-1Y-0.6Zr在Hank's溶液中浸泡45 min后的腐蚀形貌
1 Qiao Z X, Shi Z M, Hort N, et al. Corrosion behaviour of a nominally high purity Mg ingot produced by permanent mould direct chill casting [J]. Corros. Sci., 2012, 61: 185
2 Song G L, Shi Z M. Corrosion mechanism and evaluation of anodized magnesium alloys [J]. Corros. Sci., 2014, 85: 126
3 Feliu Jr S, Samaniego A, Barranco V, et al. The effect of low temperature heat treatment on surface chemistry and corrosion resistance of commercial magnesium alloys AZ31 and AZ61 in 0.6 M NaCl solution [J]. Corros. Sci., 2014, 80: 461
4 Tian Z, Song B, Liu Y B. Application and developing of AM magnesium alloy in automobile industry [J]. Automob. Technol. Mater., 2004, (7): 21
4 田政, 宋波, 刘勇兵. AM系镁合金在汽车工业中的应用与发展 [J]. 汽车工艺与材料, 2004, (7): 21
5 Feng X W, Qi W J, Li X H, et al. Microstructure and electrochemical corrosion properties of biomedical extruded Mg-Zn-Gd alloys [J]. J. Chin. Soc. Corros. Prot., 2016, 36: 267
5 冯晓伟, 戚文军, 黎小辉等. 生物医用挤压态Mg-Zn-Gd镁合金的组织与耐电化学腐蚀性能 [J]. 中国腐蚀与防护学报, 2016, 36: 267
6 Sanchez A H M, Luthringer B J C, Feyerabend F, et al. Mg and Mg alloys: how comparable are in vitro and in vivo corrosion rates? A review [J]. Acta Biomater., 2015, 13: 16
7 Luo T J, Yang Y S, Li Y J, et al. Influence of rare earth Y on the corrosion behavior of as-cast AZ91 alloy [J]. Electrochim. Acta, 2009, 54: 6433
8 Li Z, Chen M F, Li W, et al. The synergistic effect of trace Sr and Zr on the microstructure and properties of a biodegradable Mg-Zn-Zr-Sr alloy [J]. J. Alloy. Compd., 2017, 702: 290
9 StJohn D H, Qian M, Easton M A, et al. Grain refinement of magnesium alloys [J]. Metall. Mater. Trans., 2005, 36A: 1669
10 Liu H H. The effect of Zr on high temperature propert of the Mg-2.8Nd-0.35Zn magnesium alloy [D]. Harbin: Harbin University of Science and Technology, 2005
10 刘洪汇. Zr对Mg-2.8Nd-0.35Zn合金高温性能影响的研究 [D]. 哈尔滨: 哈尔滨理工大学, 2005
11 Zhao B. Study on microstructure and properties of Mg-Zn-Gd-Zr biodegradable magnesium alloy for cardioascular stent [D]. Taiyuan: Taiyuan University of Technology, 2017
11 赵兵. 心血管支架用生物可降解Mg-Zn-Gd-Zr镁合金的组织及性能研究 [D]. 太原: 太原理工大学, 2017
12 Tahreen N, Chen D L. A critical review of Mg-Zn-Y series alloys containing I, W, and LPSO phases [J]. Adv. Eng. Mater., 2016, 18: 1983
13 Liu L, Liu Z, Li J B, et al. Effect of Y content on corrosion resistance of Mg-Zn-Y alloys [J]. Hot Work. Technol., 2017, 46(20): 49
13 刘利, 刘正, 李吉宝等. Y含量对Mg-Zn-Y合金耐腐蚀性能的影响 [J]. 热加工工艺, 2017, 46(20): 49
14 Ji C X. Research on the microstructure and properties of Mg-Zn-Y-Nd(-Zr) alloys for aascular stent application [D]. Zhengzhou: Zhengzhou University, 2014
14 季川祥. 血管支架用Mg-Zn-Y-Nd(-Zr) 合金组织及性能研究 [D]. 郑州: 郑州大学, 2014
15 Chen Z, Zhang M L, Lv Y Z, et al. Role of zirconium in magnesium and magnesium alloys [J]. Foundry Technol., 2007, 28: 820
15 陈增, 张密林, 吕艳卓等. 锆在镁及镁合金中的作用 [J]. 铸造技术, 2007, 28: 820
16 Qu X L. Study on as-cast Mg-Sn-Al magnesium alloy [D]. Taiyuan: Taiyuan University of Technology, 2015
16 瞿祥落. 金属型铸造Mg-Sn-Al系合金的研究 [D]. 太原: 太原理工大学, 2015
17 Jia Y Z, Zhao M J, Cheng S J, et al. Corrosion behavior of Mg-Zn-Y-Nd alloy in simulated body fluid [J]. J. Chin. Soc. Corros. Prot., 2020, 39: 463
17 郏义征, 赵明君, 程世婧等. 模拟人体体液中镁合金的腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2020, 39: 463
18 Song G L, Atrens A. Understanding magnesium corrosion—A framework for improved alloy performance [J]. Adv. Eng. Mater., 2003, 5: 837
19 Li J R, Jiang Q T, Sun H Y, et al. Effect of heat treatment on corrosion behavior of AZ63 magnesium alloy in 3.5wt.% sodium chloride solution [J]. Corros. Sci., 2016, 111: 288
20 Song G L, Atrens A, Wu X L, et al. Corrosion behaviour of AZ21, AZ501 and AZ91 in sodium chloride [J]. Corros. Sci., 1998, 40: 1769
21 Bao L, Zhang Z Q, Le Q C, et al. Corrosion behavior and mechanism of Mg-Y-Zn-Zr alloys with various Y/Zn mole ratios [J]. J. Alloy. Compd., 2017, 712: 15
22 Zhang E L, He W W, Du H, et al. Microstructure, mechanical properties and corrosion properties of Mg-Zn-Y alloys with low Zn content [J]. Mater. Sci. Eng., 2008, A488: 102
[1] 乔忠立, 王玲, 史艳华, 杨众魁. 14Cr1MoR钢焊接接头组织及耐蚀性能[J]. 中国腐蚀与防护学报, 2021, 41(3): 400-404.
[2] 乔及森, 夏宗辉, 刘立博, 许佳敏, 刘旭东. 铝镁双金属反向等温包覆挤压棒材耐腐蚀性能[J]. 中国腐蚀与防护学报, 2021, 41(2): 255-262.
[3] 张艺凡, 袁晓光, 黄宏军, 左晓姣, 程禹霖. 铜铝层状复合板中性盐雾腐蚀行为研究[J]. 中国腐蚀与防护学报, 2021, 41(2): 241-247.
[4] 姜伯晨, 曹将栋, 曹雪玉, 王建涛, 张少朋. Gd2(Zr1-xCex)2O7热障涂层陶瓷层材料的CMAS热腐蚀行为研究[J]. 中国腐蚀与防护学报, 2021, 41(2): 263-270.
[5] 魏征, 马保吉, 李龙, 刘潇枫, 李慧. 镁合金表面超声滚压预处理对微弧氧化膜耐蚀性能的影响[J]. 中国腐蚀与防护学报, 2021, 41(1): 117-124.
[6] 韩月桐, 张鹏超, 史杰夫, 李婷, 孙俊才. 质子交换膜燃料电池中TA1双极板的表面改性研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 125-130.
[7] 李琳, 陈义庆, 高鹏, 艾芳芳, 钟彬, 伞宏宇, 杨颖. 除冰盐环境下桥梁钢的耐腐蚀性能研究[J]. 中国腐蚀与防护学报, 2020, 40(5): 448-454.
[8] 张欣, 杨光恒, 王泽华, 曹静, 邵佳, 周泽华. 冷拉拔变形过程中含稀土铝镁合金腐蚀行为研究[J]. 中国腐蚀与防护学报, 2020, 40(5): 432-438.
[9] 胡露露, 赵旭阳, 刘盼, 吴芳芳, 张鉴清, 冷文华, 曹发和. 交流电场与液膜厚度对A6082-T6铝合金腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2020, 40(4): 342-350.
[10] 王新华, 杨永, 陈迎春, 位凯玲. 交流电流对X100管线钢在库尔勒土壤模拟液中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2020, 40(3): 259-265.
[11] 胡玉婷, 董鹏飞, 蒋立, 肖葵, 董超芳, 吴俊升, 李晓刚. 海洋大气环境下TC4钛合金与316L不锈钢铆接件腐蚀行为研究[J]. 中国腐蚀与防护学报, 2020, 40(2): 167-174.
[12] 张尧, 郭晨, 刘妍慧, 郝美娟, 成世明, 程伟丽. 挤压态Mg-2Sn-1Al-1Zn合金在模拟体液中的电化学腐蚀行为[J]. 中国腐蚀与防护学报, 2020, 40(2): 146-150.
[13] 苏小红,胡会娥,孔小东. W颗粒/Zr41.2Ti13.8Cu12.5Ni10Be22.5基非晶复合材料在3%NaCl溶液中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2020, 40(1): 70-74.
[14] 王勤英,裴芮,西宇辰. 镍基激光熔覆层冲刷腐蚀行为研究[J]. 中国腐蚀与防护学报, 2019, 39(5): 458-462.
[15] 陈超,梁艳芬,梁天权,满泉言,罗毅东,张修海,曾建民. 稀土复合掺杂ZrO2陶瓷涂层抗Na2SO4+NaVO3热腐蚀性能的研究进展[J]. 中国腐蚀与防护学报, 2019, 39(4): 291-298.