Please wait a minute...
中国腐蚀与防护学报  2019, Vol. 39 Issue (4): 291-298    DOI: 10.11902/1005.4537.2018.132
  综合评述 本期目录 | 过刊浏览 |
稀土复合掺杂ZrO2陶瓷涂层抗Na2SO4+NaVO3热腐蚀性能的研究进展
陈超1,梁艳芬1,梁天权1,2(),满泉言1,罗毅东1,张修海1,2,曾建民1,2
1. 广西大学资源环境与材料学院 南宁 530004
2. 广西大学 广西有色金属及特色材料加工重点实验室 南宁 530004
Research Progress on Hot Corrosion of Rare Earth Oxides Co-doped ZrO2 Ceramic Coatings in Molten Na2SO4+NaVO3 Salts
CHEN Chao1,LIANG Yanfen1,LIANG Tianquan1,2(),MAN Quanyan1,LUO Yidong1,ZHANG Xiuhai1,2,ZENG Jianmin1,2
1. School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
2. Guangxi Key Laboratory of Processing for Non-ferrous Metallic and Featured Materials, Guangxi University, Nanning 530004, China
全文: PDF(4930 KB)   HTML
摘要: 

系统讨论了单元掺杂、二元掺杂、多元稀土掺杂对ZrO2陶瓷涂层抗Na2SO4+NaVO3热腐蚀性能的影响;总结了Na2SO4+NaVO3对热障涂层陶瓷表层、热生长氧化物层、粘结层的腐蚀行为及典型的3种热腐蚀机理;指出了提高ZrO2陶瓷涂层抗Na2SO4+NaVO3热腐蚀性能的研究方向。

关键词 稀土掺杂ZrO2陶瓷涂层Na2SO4+NaVO3熔盐热腐蚀研究进展    
Abstract

The doping effect of single, binary and ternary rare earth oxides respectively on the hot corrosion resistance of ZrO2 ceramic coatings in molten Na2SO4+NaVO3 salts was systematically summarized and discussed in this paper. The hot corrosion behavior of the top ceramic coating, thermal grown oxide scale and bond coat of the TBCs in molten Na2SO4+NaVO3 and the relevant hot corrosion mechanisms were summarized. The research direction of improving the hot corrosion resistance of ZrO2 ceramic coating against the Na2SO4+NaVO3 salts was suggested, too.

Key wordsrare earth oxides co-doped zirconia ceramic coating    sulfate and vanadate molten salts    hot corrosion    research progress
收稿日期: 2018-09-13     
ZTFLH:  TG174  
基金资助:国家自然科学基金(51361003);广西有色金属及特色材料加工重点实验室青年基金(GXYSYF1801);广西高等学校千名中青年骨干教师培育计划资助项目
通讯作者: 梁天权     E-mail: liangtianquan@gxu.edu.cn
Corresponding author: Tianquan LIANG     E-mail: liangtianquan@gxu.edu.cn
作者简介: 陈超,男,1991年生,硕士生

引用本文:

陈超,梁艳芬,梁天权,满泉言,罗毅东,张修海,曾建民. 稀土复合掺杂ZrO2陶瓷涂层抗Na2SO4+NaVO3热腐蚀性能的研究进展[J]. 中国腐蚀与防护学报, 2019, 39(4): 291-298.
Chao CHEN, Yanfen LIANG, Tianquan LIANG, Quanyan MAN, Yidong LUO, Xiuhai ZHANG, Jianmin ZENG. Research Progress on Hot Corrosion of Rare Earth Oxides Co-doped ZrO2 Ceramic Coatings in Molten Na2SO4+NaVO3 Salts. Journal of Chinese Society for Corrosion and protection, 2019, 39(4): 291-298.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2018.132      或      https://www.jcscp.org/CN/Y2019/V39/I4/291

图1  YSZ涂层循环寿命与Y2O3的含量关系[9]
图2  700和900 ℃下NaVO3腐蚀100 h后ScYSZ中m-ZrO2含量 [16]
图3  YSZ和CYSZ涂层在1000 ℃下Na2SO4+V2O5熔盐中分别腐蚀12和30 h后表面的XRD谱[17]
图4  ScYSZ和YSZ 涂层在1000 ℃下经熔融Na2SO4+V2O5腐蚀后的表面XRD谱[8]
OxideNa3VO4NaVO3V2O5
Y2O3No reactionYVO4YVO4
CeO2No reactionNo reactionCeVO4
ZrO2No reactionNo reactionZrV2O7
GeO2Na4Ge9O20Na4Ge9O20No reaction
Ta2O5NaTaO3Na2Ta4O11α-TaVO5
表1  涂层成分与钒酸盐发生化学反应的规律[19]
图5  YSZ和CYSZ在1050 ℃下Na2SO4+V2O5熔盐中分别腐蚀20和28 h后的SEM形貌[20]
图6  TiYSZ在1050 ℃下经Na2SO4+V2O5腐蚀20和40 h后的SEM形貌[20]
图7  典型YSZ热障涂层结构
[1] ZhouH, LiF, HeB, et al. Research progresses in materials for thermal barrier coatings [J]. Mater. Rev., 2006, 20(10): 40
[1] (周洪, 李飞, 何博等. 热障涂层材料研究进展 [J]. 材料导报, 2006, 20(10): 40)
[2] NelsonW A, OrensteinR M. TBC experience in land-based gas turbines [J]. J. Therm. Spray Technol., 1997, 6: 176
[3] LiQ L, LiuH F. Microstructure and properties of plasma sprayed Sc2O3-Y2O3-ZrO2 TBCs [J]. Therm. Spray Technol., 2016, 8(1): 17
[3] (李其连, 刘怀菲. 等离子喷涂Sc2O3-Y2O3-ZrO2热障涂层组织结构和性能研究 [J]. 热喷涂技术, 2016, 8(1): 17)
[4] HuaY F, PanW, LiZ X, et al. Research progress of hot corrosion-resistance for thermal barrier coatings [J]. Rare Met. Mater. Eng., 2013, 42: 1976
[4] (华云峰, 潘伟, 李争显等. 热障涂层抗腐蚀研究进展 [J]. 稀有金属材料与工程, 2013, 42: 1976)
[5] LiuY B, LiuJ H, YuY H, et al. Review of hot corrosion of thermal barrier coatings of gas turbine [J]. Chin. J. Ship Res., 2017, 12: 107
[5] (刘永葆, 刘建华, 余又红等. 燃气轮机热障涂层高温腐蚀研究综述 [J]. 中国舰船研究, 2017, 12: 107)
[6] RaghavanS, MayoM J. The hot corrosion resistance of 20 mol% YTaO4 stabilized tetragonal zirconia and 14 mol% Ta2O5 stabilized orthorhombic zirconia for thermal barrier coating applications [J]. Surf. Coat. Technol., 2002, 160: 187
[7] HabibiM H, WangL, LiangJ D, et al. An investigation on hot Corrosion behavior of YSZ-Ta2O5 in Na2SO4+V2O5 salt at 1100 ℃ [J]. Corros. Sci., 2013, 75: 409
[8] LiuH F, XiongX, LiX B, et al. Hot corrosion behavior of Sc2O3-Y2O3-ZrO2 thermal barrier coatings in presence of Na2SO4+V2O5 molten salt [J]. Corros. Sci., 2014, 85: 87
[9] StecuraS. Optimization of the NiCrAl-Y/ZrO-Y2O3 thermal barrier system [J]. Med. Sci. Monitor: Int. Med. J. Exp. Clin. Res., 1985, 13(2): CR100-4
[10] MillerR A. Ceramic thermal barrier coatings for electric utility gas turbine engines [R]. Berkeley: NACE, 1986)
[11] JonesR L, JonesS R, WilliamsC E. Sulfation of CeO2 and ZrO2 relating to hot corrosion [J]. J. Electrochem. Soc., 1985, 132: 1498
[12] JonesR L, WilliamsC E, JonesA J. Reaction of vanadium compounds with ceramic oxides [J]. J. Electrochem. Soc., 1986, 133: 227
[13] JonesR L. Scandia-stabilized zirconia for resistance to molten vanadate-sulfate corrosion [J]. Surf. Coat. Technol., 1989, 39/40: 89
[14] JonesR L, MessD. India as a hot corrosion‐resistant stabilizer for zirconia [J]. J. Am. Ceram. Soc., 1992, 75: 1818
[15] CaoX Q. New Materials and Structures for Thermal Barrier Coatings [M]. Beijing: Science Press, 2016
[15] (曹学强. 热障涂层新材料和新结构 [M]. 北京: 科学出版社, 2016)
[16] JonesR L, ReidyR F, D. ScandiaMess , yttria-stabilized zirconia for thermal barrier coatings[J]. Surf. Coat. Technol., 1996, 82: 70
[17] PidaniR A, RazaviR S, MozafariniaR, et al. Comparison of hot corrosion resistance of YSZ and CYSZ thermal barrier coatings in presence of sulfate-vanadate molten salts [J]. Adv. Mater. Res., 2012, 472-475: 141
[18] LiuH F, LiS L, LiQ L, et al. Investigation on the phase stability, sintering and thermal conductivity of Sc2O3-Y2O3-ZrO2 for thermal barrier coating application [J]. Mater. Des., 2010, 31: 2972
[19] JonesR L. Some aspects of the hot corrosion of thermal barrier coatings [J]. J. Therm. Spray Technol., 1997, 6: 77
[20] HabibiM H, GuoS M. The hot corrosion behavior of plasma sprayed zirconia coatings stabilized with yttria, ceria, and titania in sodium sulfate and vanadium oxide [J]. Mater. Corros., 2015, 66: 270
[21] XiangJ Y, ChenS H, HuangJ H, et al. Research progresses of rare-earth zirconate ceramic materials for thermal barrier coatings [J]. Mater. Rev., 2012, 26: 147
[21] (项建英, 陈树海, 黄继华等. 稀土锆酸盐热障涂层材料研究进展 [J]. 材料导报, 2012, 26: 147)
[22] XuZ H, HeL M, TangZ H, et al. Evolution of high temperature corrosion behavior of La2(Zr0.7Ce0.3)2O7 with the addition of Y2O3 thermal barrier coatings in contacts with vanadate-sulfate salts [J]. J. Alloy. Compd., 2012, 536: 106
[23] GuoL, ZhangC L, LiM Z, et al. Hot corrosion evaluation of Gd2O3-Yb2O3 co-doped Y2O3 stabilized ZrO2 thermal barrier oxides exposed to Na2SO4+V2O5 molten salt [J]. Ceram. Int., 2017, 43: 2780
[24] ZhouH H, SongP, LiaoH X, et al. Review on the failure factors of thermal barrier coatings [J]. Mater. Rev., 2016, 30(7): 81
[24] (周会会, 宋鹏, 廖红星等. 影响热障涂层失效因素的研究现状及展望 [J]. 材料导报, 2016, 30(7): 81)
[25] NiranatlumpongP, PontonC B, EvansH E. The failure of protective oxides on plasma-sprayed NiCrAlY overlay coatings [J]. Oxidat. Met., 2000, 53: 241
[26] ZhangY J, ZhangY C, SunX F, et al. Present development of thermal barrier coatings [J]. Mater. Prot., 2004, 37(6): 26
[26] (张玉娟, 张玉驰, 孙晓峰等. 热障涂层的发展现状 [J]. 材料保护, 2004, 37(6): 26)
[27] HuaJ J, ZhangL P, LiuZ W, et al. Progress of research on the failure mechanism of thermal barrier coatings [J]. J. Inorg. Mater., 2012, 27: 680
[27] (华佳捷, 张丽鹏, 刘紫微等. 热障涂层失效机理研究进展 [J]. 无机材料学报, 2012, 27: 680)
[28] DaroonparvarM, YajidM A M, YusofN M, et al. Investigation of three steps of hot corrosion process in Y2O3 stabilized ZrO2 coatings including nano zones [J]. J. Rare Earths, 2014, 32: 989
[29] BallardJ D, DavenportJ, LewisC, et al. Phase stability of thermal barrier coatings made from 8wt.% yttria stabilized zirconia: A technical note [J]. J. Therm. Spray Technol., 2003, 12: 34
[30] JonesR L. The development of hot-corrosion-resistant zirconia thermal barrier coatings [J]. Mater. High Temperat., 1991, 9: 228
[31] ZhouC H, ZhangZ Y, ZhangQ M, et al. Comparison of the hot corrosion of nanostructured and microstructured thermal barrier coatings [J]. Mater. Corros., 2014, 65: 613
[32] Loghman-EstarkiM R, NejatiM, EdrisH, et al. Evaluation of hot corrosion behavior of plasma sprayed scandia and yttria co-stabilized nanostructured thermal barrier coatings in the presence of molten sulfate and vanadate salt [J]. J. Eur. Ceram. Soc., 2015, 35: 693
[33] WuN Q, ChenZ, MaoS X. Hot corrosion mechanism of composite Alumina/Yttria-Stabilized zirconia coating in molten sulfate-vanadate salt [J]. J. Am. Ceram. Soc., 2005, 88: 675
[34] RenJ. Studies on the hot corrosion resistance of YSZ thermal barrier coatings [D]. Harbin: Harbin Institute of Technology, 2011
[34] (任杰. YSZ热障涂层的热腐蚀性能研究 [D]. 哈尔滨: 哈尔滨工业大学, 2011)
[35] BaiZ M, GuoL, LiangT Q, et al. Isothermal corrosion behavior of thermal barrier coatings in molten salt environments [J]. Trans. Mater. Heat Treat., 2011, 32(11): 123
[35] (白致铭, 郭磊, 梁天权等. 熔盐环境下热障涂层的等温热腐蚀行为研究 [J]. 材料热处理学报, 2011, 32(11): 123)
[36] BiX F, GuoH B, GongS K, et al. Investigation of high temperature hot corrosion behavior of thermal barrier coatings prepared by EB-PVD [J]. J. Chin. Soc. Corros. Prot., 2002, 22: 84
[36] (毕晓昉, 郭洪波, 宫声凯等. 电子束物理气相沉积热障涂层抗高温腐蚀性能的研究 [J]. 中国腐蚀与防护学报, 2002, 22: 84)
[37] RamachandraC, KangN L, TewariS N. Durability of TBCs with a surface environmental barrier layer under thermal cycling in air and in molten salt [J]. Surf. Coat. Technol., 2003, 172: 150
[38] BatistaC, PortinhaA, RibeiroR M, et al. Evaluation of laser-glazed plasma-sprayed thermal barrier coatings under high temperature exposure to molten salts [J]. Surf. Coat. Technol., 2006, 200: 6783
[39] TaniE, YoshimuraM, SomiyaS. Revised phase diagram of the system ZrO2-CeO2 below 1400 ℃ [J]. J. Am. Ceram. Soc., 1983, 66: 506
[40] DongH Y, RenY, WangD X, et al. Hot corrosion behaviors of SrZrO3 ceramic co-doped with Y2O3 and Yb2O3 in molten Na2SO4, V2O5, and Na2SO4+V2O5 salts mixture [J]. J. Eur. Ceram. Soc., 2014, 34: 3917
[1] 虞礼嘉,梁文萍,林浩,缪强,黄彪子,崔世宇. 激光重熔YSZ热障涂层950 ℃的热腐蚀行为[J]. 中国腐蚀与防护学报, 2019, 39(1): 77-82.
[2] 陈浩,陈庆,辛丽,时龙,朱圣龙,王福会. DD98M纳米晶AlSi渗层制备及抗高温腐蚀性能研究[J]. 中国腐蚀与防护学报, 2019, 39(1): 59-67.
[3] 王希靖, 王博士, 杨超, 杨艳, 沈斌. 纯Ni母材及焊缝在熔融Na2SO4-K2SO4中热腐蚀研究[J]. 中国腐蚀与防护学报, 2018, 38(5): 495-501.
[4] 王喜忠,吴建颢,彭徽,郭洪波,宫声凯. 电子束物理气相沉积La2Ce2O7热障涂层的高温燃气热腐蚀行为研究[J]. 中国腐蚀与防护学报, 2017, 37(1): 36-40.
[5] 刘光明,刘康生,毛晓飞,万中平,黄健航,于明明,汪元奎. T91钢在KCl+Na2SO4+K2SO4熔融盐中的热腐蚀行为研究[J]. 中国腐蚀与防护学报, 2017, 37(1): 23-28.
[6] 杨波,李茂东,刘光明,汪元奎,刘康生,翟伟,黄健航. 超音速喷涂Inconel 625/NiCr合金涂层的热腐蚀行为[J]. 中国腐蚀与防护学报, 2016, 36(5): 483-488.
[7] 吴多利, 张洪宇, 韦华, 郑启, 金涛, 孙晓峰. 4种改性的铝化物涂层对DZ38G合金热腐蚀性能的影响[J]. 中国腐蚀与防护学报, 2014, 34(6): 502-506.
[8] 王理,刘春阳,韩振宇,佟文伟. 燃气轮机涡轮零部件及材料热腐蚀行为与评价方法研究[J]. 中国腐蚀与防护学报, 2011, 31(5): 399-403.
[9] 徐仰涛,夏天东,闫健强. 合金元素对新型Co-Al-W合金热腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2010, 30(6): 457-464.
[10] 韦华;黄粮;梁静静;孙晓峰;管恒荣;胡壮麒. Re对NiCrAlY涂层热腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2010, 30(2): 150-154.
[11] 朱明 李美栓 周延春. Ti3Al基合金表面两种Cr1-xAlxN(x=0.18, 0.47)涂层热腐蚀性能[J]. 中国腐蚀与防护学报, 2009, 29(4): 306-311.
[12] 于忠锋; 郑志; 刘恩泽; 于永泗; 朱耀宵 . 两种低偏析镍基高温合金抗热腐蚀性能的研究[J]. 中国腐蚀与防护学报, 2008, 28(5): 277-281 .
[13] 杜爱华; 龙晋明; 裴和中 . 高强铝合金应力腐蚀研究进展[J]. 中国腐蚀与防护学报, 2008, 28(4): 251-256 .
[14] 李丽玲; 程永清; 张凯 . 无毒防污涂料最新研究进展[J]. 中国腐蚀与防护学报, 2008, 28(3): 181-185 .
[15] 唐咸燕 . 混凝土硫酸杆菌腐蚀研究进展[J]. 中国腐蚀与防护学报, 2007, 27(6): 373-378 .