Please wait a minute...
中国腐蚀与防护学报  2019, Vol. 39 Issue (5): 458-462    DOI: 10.11902/1005.4537.2019.157
  研究报告 本期目录 | 过刊浏览 |
镍基激光熔覆层冲刷腐蚀行为研究
王勤英(),裴芮,西宇辰
西南石油大学材料科学与工程学院 成都 610500
Erosion-corrosion Behavior of Laser-clad Ni-based Alloy Coating on Q235 Carbon Steel
WANG Qinying(),PEI Rui,XI Yuchen
School of Materials Science and Engineering, Southweast Petroleum University, Chengdu 610500, China
全文: PDF(2044 KB)   HTML
摘要: 

利用高功率半导体激光器在Q235碳钢基体上制备镍基合金熔覆层,并分析了熔覆层的微观组织及组分。采用自制管流式冲刷腐蚀试验机对所获熔覆层进行冲刷腐蚀实验,研究了冲刷角度和固相颗粒对熔覆层冲刷腐蚀行为的影响规律。结果表明,镍基激光熔覆层微观组织均匀,缺陷较少。熔覆层的腐蚀行为受流体正应力和切应力协同效应的影响较大。除此之外,固相颗粒的加入进一步降低了熔覆层的耐蚀性。

关键词 激光熔覆技术镍基熔覆层冲刷角固相颗粒冲刷腐蚀行为    
Abstract

Ni-based alloy coating was prepared on the Q235 carbon steel substrate via laser cladding with a high power diode laser. The microstructure, composition and erosion-corrosion behavior of the coating were characterized by means of SEM+EDS and a home-made pipe flow erosion-corrosion tester. The effect of erosion angle and solid particles on the erosion-corrosion behavior of the coating were investigated. Results show that the laser-clad Ni-based alloy coating had uniform microstructure and fewer defects. The erosion-corrosion behavior of the coating was greatly affected by the synergistic effect of the normal stress and shear stress in flow. In addition, the addition of solid particles further reduced the corrosion resistance of the coating.

Key wordslaser-clad technology    laser-clad Ni-based coating    erosion angle    solid particle    erosion-corrosion behavior
收稿日期: 2019-09-16     
ZTFLH:  TG172.2  
基金资助:国家自然科学基金(51801167);中国科协青年人才托举工程(2018QNRC001);西南石油大学青年科技创新团队(2018CXTD06)
通讯作者: 王勤英     E-mail: wangqy0401@126.com
Corresponding author: Qinying WANG     E-mail: wangqy0401@126.com
作者简介: 王勤英,女,1987年生,博士,副教授

引用本文:

王勤英,裴芮,西宇辰. 镍基激光熔覆层冲刷腐蚀行为研究[J]. 中国腐蚀与防护学报, 2019, 39(5): 458-462.
Qinying WANG, Rui PEI, Yuchen XI. Erosion-corrosion Behavior of Laser-clad Ni-based Alloy Coating on Q235 Carbon Steel. Journal of Chinese Society for Corrosion and protection, 2019, 39(5): 458-462.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2019.157      或      https://www.jcscp.org/CN/Y2019/V39/I5/458

图1  管流式冲刷腐蚀试验机结构示意图

Solid particle

condition

Erosion speedm/sImpact angledegTimeh
Without SiO2104
45
90
With SiO21454
表1  冲刷腐蚀实验条件汇总
图2  镍基激光熔覆层截面显微形貌
图3  镍基激光熔覆层微观组织形貌
图4  镍基激光熔覆层在3.5%NaCl溶液冲刷中的Nyquist曲线
图5  镍基激光熔覆层在3.5%NaCl溶液中的动电位极化曲线
Angle / degSolutionEcorr / VIcorr / 10-7 A·cm-2
03.5%NaCl-0.2035.204
453.5%NaCl-0.2468.103
903.5%NaCl-0.1761.476
453.5%NaCl+solid particle-0.27010.471
表2  由极化曲线拟合获得的电化学参数
图6  镍基激光熔覆层在3.5%NaCl溶液中冲刷腐蚀后的微观形貌
1 DaiZ, DuanZ X, ShenS M. Factors on erosion-corrosion in liquid-solid two-phase flow system [J]. Petro-Chem. Equip., 2006, 35(6): 20
1 代真, 段志祥, 沈士明. 流体力学因素对液固两相流冲刷腐蚀的影响 [J]. 石油化工设备, 2006, 35(6): 20
2 YangN, ChaoM J, YangW C. Laser cladding process and current status of cladding materials [J]. Tech. Mess, 2010, (14): 10
2 杨宁, 晁明举, 杨文超. 激光熔覆工艺方法及熔覆材料现状 [J]. 科技信息, 2010, (14): 10
3 d’OliveiraA S C M, VilarR, FederC G. High temperature behaviour of plasma transferred arc and laser Co-based alloy coatings [J]. Appl. Surf. Sci., 2002, 201: 154
4 McPhersonN A, ChiK, BakerT N. Submerged arc welding of stainless steel and the challenge from the laser welding process [J]. J. Mater. Process. Technol., 2003, 134: 174
5 XuG J, KutsunaM, LiuZ J, et al. Characteristics of Ni-based coating layer formed by laser and plasma cladding processes [J]. Mater. Sci. Eng., 2006, A417: 63
6 PeiY T, OuyangJ H, LeiT C. Microstructure of bonding zones in laser-clad Ni-alloy-based composite coatings reinforced with various ceramic powders [J]. Metall. Mater. Trans., 1996, 27A: 391
7 ZhengZ B, ZhengY G, SunW H, et al. Erosion-corrosion of HVOF-sprayed Fe-based amorphous metallic coating under impingement by a sand-containing NaCl solution [J]. Corros. Sci., 2013, 76: 337
8 ZhangD W, ZhangX P. Microstructure and erosive-corrosive wear characteristics of laser cladding stainless steel with Ni-Cr3C2 and Ni-WC [J]. Trans. Chin. Soc. Agric. Mach., 2005, 36(3): 126
8 张大伟, 张新平. 激光熔覆Ni基合金/碳化物涂层组织及冲刷腐蚀磨损性能 [J]. 农业机械学报, 2005, 36(3): 126
9 LiuG Y, BaoC G, ZhangA F. Study on erosion-corrosion property of metal material [J]. J. Mater. Eng., 2004, (11): 37
9 刘国宇, 鲍崇高, 张安峰. 不锈钢与碳钢的液固两相流冲刷腐蚀磨损研究 [J]. 材料工程, 2004, (11): 37
10 TianB R, ChengY F. Electrochemical corrosion behavior of X-65 steel in the simulated oil sand slurry. I: Effects of hydrodynamic condition [J]. Corros. Sci., 2008, 50: 773
11 YaoX Y, ZhaoY H, JiangS L, et al. Erosion-corrosion resistance of laser-clad Co-based alloy layer on 316L stainless steel [J]. Mater. Prot., 2015, 48(6): 32
11 姚新阳, 赵宇航, 姜胜利等. 316L不锈钢表面激光熔覆Co基合金层的耐冲刷腐蚀性能 [J]. 材料保护, 2015, 48(6): 32
12 ChenL, BaiS L. The anti-corrosion behavior under multi-factor impingement of Hastelloy C22 coating prepared by multilayer laser cladding [J]. Appl. Surf. Sci., 2018, 437: 1
13 ChenL, BaiS L, GeY Y, et al. Erosion-corrosion behavior and electrochemical performance of Hastelloy C22 coatings under impingement [J]. Appl. Surf. Sci., 2018, 456: 985
14 ZhouY H, HuZ L, JieW Q. Solidification Technique [M]. Beijing: Mechanical Industry Press, 1998
14 周尧和, 胡壮麟, 介万奇. 凝固技术 [M]. 北京: 机械工业出版社, 1998
15 WangQ Y, ZhangY F, BaiS L, et al. Microstructures, mechanical properties and corrosion resistance of Hastelloy C22 coating produced by laser cladding [J]. J. Alloy. Compd., 2013, 553: 253
[1] 江克,陈学东,杨铁成,张玮,梁春雷. 典型奥氏体不锈钢高温环烷酸腐蚀行为研究[J]. 中国腐蚀与防护学报, 2012, 32(1): 59-63.